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ABSTRACT 

The problem of synchronizing a set of operations defined on a shared resource 

is studied.   It is assumed that the decision as to which operations may be executed at 

some given time is dependent only on the sequence in which the operations have 

already executed.   Equivalence classes of these sequences, called states, can then be 

used to define synchronization.   A restriction is made such that only those resources 

for which the syr.ch,.nization can be expressed using a finite number of states will be 

studied.     The   states   along   with   a   successor   function,   which   is   defined   for   a 

state-operation pair if the operation may start execution when the resource is in that 

state, form what are called synchronization relationships. 

A distinction is made between resources on which only one process may execute 

an operation at a time, called serial resources, and resources on which several 

processes may execute operations in parallel, called concurrent resources. To handle 

concurrent resources, the states must be modif.ed so that they correspond to 

equivalence classes of sequences of perilogues instead of operations. A perilogue is 

either the start or the finish of the execution of some operation. 

Several variations of regular expressions are presented with which the 

synchronization for a shared resource might be expressed. Also, a method which can 

be used to implement the synchronization relationships is given. This implementation 

has a high overhead so several possible simplifications are shown. Each variation of 

regular   expressions   and   each   simplification   of   the   implementation   is   shown   to 
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correspond to some restricted class ot the synchronization relationships. The set of 

synchronization problems which can be solved using one implementation or notation 

which can't be solved using some ether implementation or notation can be found by 

comparing the corresponding clessei 

ill 

. . ■ ■ ... 
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CHAPTER 1 

INTRODUCTION 

In programming systems, it is usually necessary to enforce rules regulating the 

behavior of the system. Such a set of rules is known as a protection policy and the 

enforcement mechanisms are known as a protection system implementing that policy. 

Scope rules in programming languages and the restriction of allowing only authorized 

users to access files are examples of protection. Another example occurs when one of 

several cooperating processes must temporarily halt execution pending the completion 

of some set of action« by the others. Such protection is referred to as 

synchronization. A set of rules governing when a process must halt and when it can 

continue execution is referred to as a synchronization problem. 

An important use of synchronization is to control the access to resources by 

cooperating sequential processes. A resource is any physical device or segment of 

memory which can be referenced by the programming system. Some examples are a 

data structure in a process' virtual memory, a file on a permanent storage device, and 

an I/O device. Each resource has associated with it a set of operations which are used 

to extract information from it, to alter information in it, or to add information to it. 

In order for the processes to cooperate, it is necessary to allow them to share 

resources. For instance, a message buffer must be accessible by the processes 

sending messages and by the processes receiving them. To insure that the value of a 

shared resource is always well defined when a process invokes one of the operations 

.  
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d.,m.a on It, U.U.1I, th. resourc. m.y only b. oper.M on by on. proc... .. . «m. 

and th. op.r,.ions »os. .«cut. on,y in cl.in s-ooonces.   W so., proc.s. tri.. to 

„.cut. .n op.r..,on wh«. so», otber pr«... is .***<* on th. r.sourc. or .n 

.ncorroc. soooonc. o. op.r.tions wou,d r„u,t, th.n th. proc st h.lt un.l, .hi. 

cond,.ion is no iong.r tru..   Such synchroniz.tion o d r.sourc, I. th. topic 

which will be explored. 

BACKGROUND 

The problom 0. synchroni.ing proc.ss« without usin, busy w.itin, w« «r.t 

soived by aih.tr. with P and V synchroni.ation primitives [D681   Sin» then a. 

other  synchronization primitive sets have been proposed to solve problems which 

couldn't be solved e.siiy with any o. th. e.istin, primitiv«,   Th... include allowing P 

or   V  to  be executed  simultaneously on sever., semaphores (P-V  multiple) [P7H 

(introduced to solve the cig.r.tt. «moH.r. problem), .llowlng . sem.phor, to b. 

ceremented   or   decremented  by   .  value  ,re.ter   th.n  on.  (P-V  chunh)  ^72] 

«„troduced to solve the hounded reader-writer problem), and s.p.r.tlng th. ...tin, 

and   th.   decrementing   0,   a   semaphor.   Into   two   oper.tlons   «*-****   [W72] 

(introduced to solve the general r..d.r-writ« problem). 

,„ addition, several methods have been proposed to allow synchroniz.tlon to be 

expressed in a more -structured- manner.  These methods .r. meant to be used In . 

high level language to control access to shared resources.   A ogy can be mad. 

between th. relation ot these high level methods to .h. prlmiti d the reftlon o. 

high level programming language control structure. .0 ...embly l.ngu.g..   Th. high 

I 
;      "    ■ .   .   .. . . " 



.—-——.          '—     ■ ■    ■ 

on. 

ions 

INTRODUCTION 
3 

'eve, synchro„i..,l„n m.,h()ds pr0„,de . s|rut,ured me8ns ^ ^^ ^^ 

occU.r,„g sy„chr0„i2a„on, lhu. helpmg ,0 impr()ve un((er5|and8bi|i|y arid ^^^^^ 

.us, ..  ,F . THEN . asE ,„, WH|. E . ^ ^^^^ provide a M^M( ^ |o 

e«Pre,s fre^Uy us.d contro, 0„h5 A comp„er c§n ^^ ^ ^^ ^ ^^^ ^ 

synchroni.Mio. in (.rn. of prlr .ives ,„., .. „. contro| s|ructürts ^^ ^^ ^ 

terms of test and jump instructions. 

The first of Ih«. methods is "reg.ons- proposed by Brinch Hensen [BH72].   A 

region is . sfetemen, „p. th.t ocja,ed w|,h some sh8red ^^   For ^ ^ 

,h 50U^",■  0nly  0"e  "^  -  '  >»»  can  .„cut.  ,„  associated  regi 

furthermore, shared resources can on,y b. accessed in these regions.   Thus, reg 

provide structured critic., s.Cions and a„ow a compiier to enforce mu,u.„y e.Cuaiv. 

eccess of shared resources.  Sequencing is sfill handled using primitives. 

It has long been recogniEed ,„., ^„^ ^^ ^ ^^ ^ ^ 

onlv be executed in a restricted manner Thus, procedures ha« on,y one .„t,y point 

and a jump m.y not be made into the middle of one from outside of if, Ukewl.,, 

primitive data types such as integers, reals, booleans, and characters may only b. 

operated on by certain operations. For instance, booleans may not 0. added. This 

Idea should be extended to „ore compiex resources. They shouid only b. accessible 

through a ,ew operations which completely define the behavior of the resource. 

Allowing a resource to be accessed only by so™ fixed se, of operations has 

sever,, advantages. The first is that at the point i, is used, all ,„., needs to be known 

about the resource is the ef.ec, of each operation which can be used. How i, is 

Impiemented is unimportant.   For instance, a s.acK is defined by the effects of Ih. 
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operations push an item, pop an item, and test for emptiness on the values of the 

other operations. Whether it is implemented using an array, a linked list, or by some 

other means is unimportant.   Users perceive only the three operations. 

Next, if the resource may oniy be accessed through several operations rather 

than in an arbitrary manner, it is more likely that the value of the resource will always 

be meaningful. Finally, a verification that the resource always is accessed correctly 

can be confined to several operations and can ignore the rest of the code of the 

programs which use the resource. 

A convenient means to insure that a resource can only be accessed through a 

fixed set of operations is to include the implementation details and the operations in a 

module. The only names defined in the modyle which can be used outside of it are 

those of the operations. Concentrating the implementation and access details of a 

resource in a module also has the advantage »hat if the implementation ir changed in 

some way, all of the places in the access algorithms that need modification are 

localized and are therefore easily found. There is no need to search trough ell of the 

programs that use the resource to make these changes. Flon [F75] discusses such 

modules in more detail and gives some examples. 

The module is also the best place to define in which sequences the operations of 

a resource may execute. The synchronization can then be considered as part of each 

operation and the operations can be used without concern for synchronization. Also, 

as with the implementation, it is easier to make modifications and to verify correctness. 

The last two synchronization methods to be described are meant to be used in just 
* 

this way. 
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Hoare [Ho74] p'oposed the concept of a "monitor" for synchronization. A 

monitor is a collection of data, procedures which operate on this data, and 

initializations, The data may only be accessed by these procedures and only on© 

process at a time can do so. Thus, a monitor may be thought of as providing a critical 

section around the data and procedures of a shared resource. As with regions, 

sequencing still must be expressed using primitives. 

Finally, Campbell and Habermann [CHB74] have proposed path expressions as a 

means of synchronizing a set of procedures operating on a collection of data. A path 

expression consists of an expression R which contains each operation name once and 

which is enclosed in a PATH - END pair. R may be a single operation name, it may take 

the form RVR" meaning that either some sequence of operations expressed by R' or 

one expressed by R" may occur, or it may take the form R'jR" meaning that some 

sequence of operations expressed by R' should be followed by one expressed by R" 

where R' and R" are of the same form as R. The path expression, once completed, may 

then be repeated.   Thus, 

PATH f ; (g+h) END 

means that f should be executed first, then g or h, and then this sequence starts over 

again. • 

MOTIVATION 

To be able to decide how useful a given method is for some application. It must 

be known which of the desired synchronization problems can be solved using that 
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mathod. Therefore, when i synchronization method is propoeed, the cl»«8 of problems 

which can be solved using it should also be given, Lipton [L73] has compared the 

various primitives and for each one has characterized some of the problems which 

can't be solved using that primitive system. The complete set of problems which each 

synchronization method can or can't solve hasn't been shown, though. 

A strong meaning of "solve" must be used here since any synchronization 

primitive may be implemented using critical sections and letting a process block itself 

or wake up a blocked process.  The following is an example of how this can be done: 

CRITICAL SECTION BEGIN 
test each blocked process 
IF process-j may now continue THEN WAKEUP(process-j) FI; 
IF this process can't continue THEN indicate it is blocked 

CRITICAL SECTION END 
BLXK 

ELSE CRITICAL SECTION END 
FI 

The BLOCK occurs outside of the critical section in order t' allow other processes to 

enter to execute WAKEUP. One way to find each blocked process is by Keeping a list 

of them. Then, to indicate that a process is blocked, it is put on this list. Notice that ■ 

process which wants to wake another might be stopped trying to enter the critical 

section if another process is already in it. Such a delay wouldn't occur if a primitive 

replaced the critical section. Therefore, by solve it will be meant that there aren't any 

f xtra places where a process may become blocked such as at the start of the criticel 

section above. 

In order to show that a group of processes cooperate correctly, it must be 

possible to understand how they are synchronized.   Also, the consequences of any 
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modificatifx -. to the synchroni/dtion must be understandable. This helps insure that 

what is actually programmed is what was desired, It also makes it easier for someone 

else to maKe changes. As the difficulty in understanding increases, the possibility of 

an error occurring and the difficulty in detecting such errors also increar? Finally, 

certain deadlock possibilities should be detected. These possibijities include a process 

that waits on a semaphore which has an initial value of zero and which no process will 

ever increment. Another example is when a process uses a critical section nested in 

another and a second process uses the second critical section nested in the first. 

The problem with synchronization primitives is that they, and therefore any 

changes, may be scattered throughout the code executed by the various processes. 

Furthermore, no structure is imposed on their use. Regions and monitors provide 

higher level structures for writing critical sections, but sequencing must still be 

performed using synchronization primitives. These primitives may be scattered 

throughout a monitor or region. Only with path expressions I* the desired sequencing 

clear. 

Another problem with regions and monitors is their strict enforcement of mutual 

exclusion. In the reader-writer problem where the read operation may be performed 

simultaneously by an arbitrary number of readers, this operation can't be part of any 

region or monitor. This means that the data structure on which the read operation is 

defined can't be part of any monitor since otherwise any operation which can execute 

on it mus1 also be part of that monitor. The result is that operations "startread" and 

"endread" must be introduced just to provide synchronization. Path expressions solve 

this problem with the introduction of a {-} construction. This notation has the meaning 
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that an arbitrary number of processes na/ execute . * operations within the bracKets 

simultaneously.  Thus, 

PATH write+{re8d) END 

means that either one process may write the data structure or several processes mey 

simultaneously read it. The brackets, however, don't allow restricting the numbur of 

readers to some finite bound. 

PROBLEM TO BE STUDIED 

It is the purpose of this research to study synchronifetion in terms of ti>e 

allowable sequences of operations on a shared resource. Thus, it will be assumed that 

each resource may only be accessed through a fixed set of operations. Since state 

machines have been widely used to study sequences of symbols [HU69], it will be 

convenient to use them to represent these sequences. Each operation defined on the 

resource will correspond to one or more state changes. In order to simplify the study 

somewhat, only that synchronization which can be described In terms of a finite 

number of states will actually be discussed. 

The operations which can be used on a shared resource are executed by the 

various processes of the programming system. A process can be considered to be ■ 

sequence of calls on the operations of the shared resources possibly interspersed with 

calls on the operations of resources which can only be accessed by that process. 

There is also some control which regulates the sequence of operation calls. 
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A distinction will be made between those resources on which operations can be 

executed in parallel and those on which operations must be executed one at a time. In 

order to handle parallel execution, each operation must consist of two state changes, 

one at the beginning of the operation and one at the end. 

Several subclasses of finite state machines will be introduced by restricting the 

admissible state changes. Since each synchronization problem is represented by a 

state machine, each of these subclasses limits the set of problems which can be 

expressed. Therefore, each restriction of the finite state machines also defines a class 

of synchronization. The task of showing which problems a synchronization system 

solves thus corresponds to presenting the appropriate restriction of the state 

machines. 

The main criteron which is used to restrict the state changes is the manner in 

which the resulting synchronization class can be implemented. If for some 

implementation there is no corresponding class, then every class containing the set of 

synchronization problems which could be implemented with that implementation which 

contains this set must also contain some synchronization problems which can't be. . 

Thus, a more complex implementation is needed for every such cits«. Howsvar, if this 

set contains all of the synchronization problems of interest, thon he simpler 

implementation would have been si/fficient. 

Ease of implementation shouldn't be the only factor used in selecting the class of 

synchronization to provide in a language for parallel programming. In order to express 

synchronization outside of the class which is provided, a user must implement a larger 

class  in terms  of the  existing class.   The resulting impleme-tation  must  be  more 
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complex than if the larger class h*' been provided inK'.ally,  Furthermore, the user has 

an extra opportunity for a programming error. 

In order for the designer of a language for parallel programming to b« ab'e to 

use one of these classes, it must be possible to express the «ynchronUtatlon of that 

class in so .e notation. As explained above, path expressions provide a means for 

expressing synchronization which is easy to understand relative to the other methods. 

Unfortunately, they can only be used for a simple class of problems, Regular 

expressions of the operation names, a generalization of path expressions, can be used 

to describe any synchronization which can be expressed with a finite state machine. 

This suggests that some restriction to regular expressions would be suitable for each 

class. Therefore, several modifications to regular expressions will be Introduced and 

compared with the classes. 

Even though regular expressions are used in this research, there might exist 

other notational systems which are equally suitable. Regular expressions were 

selected because of their correspondence tp finite automa'-« and because they are 

easy to use and understand for simple synchronization. If some other notation is used, 

the class of synchronization which can be expressed with it should be shown. 

OUTLINE OF THE THESIS 

In chapter IIf the finite state model for resources on which only one operation at 

a time may execute Is developed. This includes some definitions and basic results as 

well as a discussion of how these resources may be implemented.   Where relevant, 

.... ... 
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;mplemenfation.    This   riK„n   t.   »i. 
ms   result   is   then  extended   to   orocrr«««,!«-   i 

10   programming   lenguage   control 
firrnrtiir«»» structures. 

be """ e,emen,S'   "- •" H - .o  more 

"••   "».d  to   simpli,y   ,h.  impl,m,„t,ti0n 0(  |h, • 
mese  parallel  resources.   Chapter VI 

summarizes  what hac  k. L 
has  been shown and points to areas  w^re ,ut ch „ 

needed 

^ "^ 0 " "" ^ * chons which are present., .r. 
related to each other. 
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CHAPTER U 

SERIAL RESOURCES 

»n K« studied calB with shared resources on 
The first type of synchronizat.on to be stud.ed 

. m-v execute operations simultaneously, 
which not more than one process may execute ope 

.h.red resource on which only one proces« at 
DofinMom   \ wrtel r^ourr« ia a shared 

a time may execute. 

It .^ b. n...— —•-^•,o',7:0;;;.::. 

during the execution of f. 

ltm.y.,...th.c ..— »P..—-— 

sequences. 

j tn n«s messages between processes. 

E*ampl. 2.U   Consider »^»•^^^W    ^"^ ^ "^^.! The operations which are ^fmed a e   .ns ^ ( ^^ wM8^. 
Lsage"    If -ore than o- o^8ho   may e ^ ^ ^ ^^ 

could be inserted l^b,ed *0g^r ^ Reived exactly  once, then  the 
reni0ved.    If  each  ^«s^  ;f  ^ r

alternate        .rwise. a message 
execution of  remove "^ '^^   ^M be twice. 
might be overwritten and tost or else    mS 

K," ni«tion Syrern is used to guarantee this 
u i8 the responsibility . whatever synchronization sy 

♦ c«mi*nce of operations doesn l occur. ..ri.,...cu.ion.nd ..■.„•"-. th..."lncorr«..MU.n»o 

„,„„e. In which th. op.'«tion« -tiA* <' 

acceplabl,.,f.,.M.2..-o^soth.1 ..-V- — 
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once or not at all, then all that matters is that insert and remove don't overlap In time. 

The order in which they execute is no longer important. Such synchronization is 

usually handled by writing the operations as critical sections. 

One way to express the allowable sequences of operations is to write them out 

explicitly. Alternatively, relationships of the form "operation f may be executed on the 

shared resource if the order in which operations have been executed form sequence 

oc" may be used. However, if there is no restriction on the number of time? that an 

operation may execute, these sequences may be arbitrarily long, Therefore, an infinite 

number of these relationships would be necessary. Usually, though, part of the 

previous history is unimportant. 

Examph 2.2: Returning to the message buffer of example 2.1, the desired 
sequencing is that the execution of insert and remove alternate. 
Therefore, when something is removed from the buffer, it matters only 
that the most recent operation on the buffer was insert and when 
something is inserted, it matters only that the most recent operation was 
remove. 

Dofiniiion: The «/otn of a shared resource is that port of the succession of 
operations which have executed on the resource and that is necessary to 
determine which operations may execute in the future. 

In what follows, the symbols p and q will usually be used to represent the state. 

The relationships now take the form "operation f may be executed on the shared 

resource if its state is p wi^h the result being state q". 

Dafinitiom The tynchronization rdationshipi for a shared resource consist of a 
list of the states and for each, a list of the operations which may execute 
when the resource is in that state and the state which results. 
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The resulting state q is created by adding f to the execution sequence represented by 

p. Of course, some of this history lay no longer be important and will be omitted from 

state q. 

The following notation will be useful when dealing with these relationships. 

Definition: If p is a state and f an operation, then the successor function, S(p,f), 
has the value q if operation f may execute when the resource state Is p 
with the resulting state being q. If f can't execute when the state of the 
resource is p, then S<p,f) is undefined, If S(p.f) '8 defined, then (p,f) is en 
arc of the resource 

Example 2.3: For the message buffer, example 2.2 shows that there are two 
states lastinsert and lastremov© with lastremove being the initial state, 
S(lastremove,insert) » lastinsert, and Sdastinsert/emove) - lastremove. 
S(lastremove,remove) and Sdastmse^insert) are undefined. The arcs are 
(lastremove.insert) and (lastinsert.remove). 

Thus, the successor function S is a partial function which is defined for those states 

and operations such that the operation may execute when the resource is in that $tate. 

Whenever S(p,f) is defined, it will be said tltat operation f may be applied at state p. 

It will often be desirable to detern ine if a sequence of operations, rather than a 

single operation, may execute on a shared resource. 

Definition:   An arc pregrosnion from a state OQ to a state qn is. a string of arcs 
(q0,f 1)..,{qn_1,fn) such that (Vi, ISiSn) S(qj.1,fj) i qj. 

Thus, an arc progression specifies a possible ordering for the execution of the 

operations fj. Note that there is no restriction requiring that the arcs be distinct. It 

might be true that q^ - qij and fj - fj for some i and j, 0<i<j<n, When this happens, 

it must also be true that qj ■ q:.  A special case is when an arc progression is circular. 

Definition:   A cycle is a non-empty arc progression from a state q to q. 
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In example 2.3, the arc progression (lastremove,ins8rt)(lastinsert,remove) is a cycle. 

Critical sections are an even simpler case of cycles. Since any sequence of 

operations is acceptable, none of the previous history is important. Therefore, a single 

state is sufficient and each operation must start and end at this state. Each arc 

progression, including any of length one, is from this single state to itself and is a 

cycle. 

FINITE STATE RESOURCES 

As states have been described so far, it is impossible to deal with an infinite 

number of them. The successor function is defined by listing the value for each arc of 

the resource. If the number of states is infinite, then so is the number of arcs. Thus, 

a natural restriction will be to permit onjy a finite number of states for n shared 

resource. 

Definition:   A resource is finite »täte if the number of states, and therefore the 
domain of the successor function, is finite. 

Unfortunately, there are serial resources with an infinite number of states, Consider a 

stack of unbounded size on which the operations PUSH and POP are defined The 

desired synchronization is that only one process at a time can execute one of these 

operations and that at any given time PUSH must have been executed at least as many 

times as POP. The information represented by the state must be how many more times 

PUSH has executed than POP. Since this number may be arbitrarily large, there must 

be an infinite number of states. 
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Usually, such resources miy be studied with a finite state system by putting • 

limit on the memory size used by such « resource or, if the resource isn't serial, then 

on the number of processes w/hich can use the resource simultaneously. Thus, the size 

of the stack in the above example could be bounded. Such a restriction would occur in 

practice anyway. A mechanism will be developed in chapter IV which will enable the 

handling of some resources with an infinite number of states and an indication of how 

this can be done will be given in chapter VI. Other than in these places, however, such 

resources will be outside the range of the research reported here. 

In order to help study finite state resources, the concept of a finite automaton 

[HU69, page 26] is needed. A finite automaton is a system (K,l,i,qQtF) where K is a 

nonempty, finite set of states, I is a finite input alphabet, I is a mapping of (K,I) into 

K, q0 < K is the initial state, and F c K is the set of final states, The system is initially 

in state QQ and as each successive character fj of an input string is read, the 

automaton enters state qj - «(qj.^fj). It qn < E, then the string fj...^ is accepted. 

Otherwise, it is rejected. 

While the synchronization relationships for a finite state resource resemble a 

finite automaton, there «re several differences. These differences are based on how 

each is used. A finite automaton Is used to indicate whether or not a given string is 

correct. Thus it has final states. Also, regardless of what state the automaton is in, 

any input is possible and therefore a resulting state must be defined. However, if an 

input insures that the string will be rejected, f must be impossible to reach a final 

state from the resulting state. 

Definition:   A state p <; K is dead if (Vx ( I*) «(p,x) isn't a final state. 
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In the definition, I* is the set of all strings of length 0 or more of symbols from I. 

The function B is extended to I* as follows. If x is the siring of length 0, then l(p,x) - 

p.   If x - x's where x' ( I* and s ( I then 8(p,x) - aWp.x^s). 

The easiest way to find Kie dead states is to first find the set L of states which 

aren't dead. Clearly, any state o. r is in L Therefore, L is initiaiized with F. Any 

state q such that (3s) «(q.s) < L is also in L This procedure is then repeated until 

there are no more such states q.  Any states which aren't in L at this point are detid. 

The synchronization relationships, on the other hand, are used to guarantee that 

only correct strings are input. Any input which would Insure that th'i string is 

incorrect is delayed until this condition no longer holds. Thus, not every input Is 

possible from.any given state and in such cases a resulting state is not defined. This 

means that dead states aren't needed, Finally, usually an infinite string will be input so 

the idea of a final state is meaningless. 

Subject to these restrictions, the following result is presented, 

Theorem 2.4: A serial resource R is finite state iff the synchronization 
relationships and some finite automaton (K,I,6,qo.F) represent the same 
acceptable sequences of symbols. 

Proof: For each state p of R, let there be a state p' ( F and for each 

operation f of R let there be a symbol s « I. In addition to the states of 

F, let there be another state in K which is dead. Since the number of 

states and operations of R are finite, so are the number of states and the 

input alphabet of the finite automaton. Define a(q,s) as follow«. If S(p,f) is 

defined, then «(p'.s) is the state of F corresponding to Slp.f).  Otherwise, 
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8(p',s) is the dead state. Th« construction is completed by letting the 

initial state of K be the state corresponding to the initial state of R. A set 

of synchronization relationships corresponding to a finite automaton may 

be created by reversing this process. 

This correspondence between the synchronization relationships for finite state serial 

resources and finite automata can be used to apply results from automata theory. Two 

elementary results are particularly important. 

There is a class of expressions, known as regular expressions, which have been 

shown to represent the same c!ac: of strings from an alphabet as can be recognized 

by finite automata [HU69]. These expressions may be described recursively as follows 

A single character from the alphabet is a regular expression. So are constructs of the 

form RR', R+R', and R* where R and R' are alco regular expressions. RR' means a string 

represented by R followed by a string represented by R1, R+R' means either a string 

represented by R or a string represented by R'. R* represents the infinitely long 

expression «+R+RR+RRR+.., where ( is the empty string. The following result can now 

be given. 

Corollary 2.5:   A serial resource is finite state iff the permissible sequences of 
operations or it can be expressed using a regular expression. 

For   example, the synchronization for  the message buffer of example 2.3 can be 

expressed with the regular expression (insert remove)*. 

Using  e   regular  expression rather than the synchronization  relationships  to 

specify synchronization has several advantages.   First, the system designer no longer 
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needs to worry about states.   Second and more important, it is easier to understand 

which are the allowable sequences of operations. 

The unimportance of final e'.ateo has an effect on the regular expressions which 

can be used to specify synchronization. The expressions (f*g) and (13) both 

indicate an arbitrary interleaving of the execution of the operations V and g. The 

difference is that in the first expression, the state won't be final if the last operation 

to execute was an f. In the second, though, there is a single state which Is also a final 

state. For use in synchronization, since final states are unimportant, these expressions 

are equivalent. 
• 

The successor fur-tion as described is determinstic. By this is meant that for 

each element of the domain either the result is unique or else '1 is undefined. If the 

successor function were nondeterministic, there would be more than one possible 

result for some argument. A state would be chosen at random for which there might 

be no processes waiting. However, processes could be waiting for anothar possible 

resulting state. These procesres would then continue to wait even though it would be 

permissible to allow one to run. 

It might be worth :onsidering a nondeterministic successor function if some 

synchronization can be described with a finite number of states that would require an 

infinite number if the successor function is deterministic. The following resiflV fron 

automata theory shews that there are no such resources. 

Corollary 2.6: If a serial resource is finite state, then thy allowable sequences 
of operations on it can be expressed using a deterministic set of 
synchronization relationships. 
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If the successor function S is nondeterministic, then a set of synchronization 

relationships with a deterministic successor function S' which expresses t^.e same 

allowable sequences of operations can be constructed as follows [HU59]. For each 

nonempty element of the power set of states {p^..,pn), create a new state q. Assume 

that for operation f S(p1,f)U...uS(pn,f) - T where T is a set of states. If T is nonempty, 

then there rrilist be some new state q' which corresponds to In this case, let 

S'(q,f) - q'. !' T is the empty set, then f can't be applied at q and SXq.f) is undefined. 

Thd new initial state qQ is the state which corresponds to {p0} where p0 was the 

original initial state. The synchronization relationships can be simplified by removing 

every state to which there is no arc progression from qQ. 

PERSISTENT SETS 

For programs consisting of several parallel processes which may r."-, for an 

indefinite period of time, such as an operating system, some of the operations defined 

on each resource must be able to be executed arbitrarily many times. Otherwise, after 

an operation has been used the maximum number of times, if a process tries to 

execute the operation, then the process will wait forever and will be deadlocked. 

Furthermore, when no operations will again be allowed to execute, it will be Impossible 

tc access the resource. Thus, there must be some set of operations such that for each 

there will always be some point in the future when it can be used to operate on the 

resource. In most circumstances, the only exceptions are initialization operations. For 

example, an operating system might provide an operation which is called by user 

processes to reserve a tape drive.   If the tape drive resource may enter « state in 

■ 
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which the reserve operation may never again execute, then any user trying to reserve 

a tape drive will become deadlocked. 

Definition.    An operation on  a shared resource is  pormanont if there must 
always be a possibility that it can execute sometime in the future. 

One way fo specify that a set of operations can repeatedly be executed is to include 

them in a cycle. 

Dafinition: A pcrtittem «01 is a set of states P such that (Vp < P) (Vf which can 
be appliec at P) S{p)f) i P and (Vp.q i P) there is an arc progression from 
p to q (and also one from q to p). An operation f is an auxiliary of the 
persistent set if (3p ( P) f may be applied at p. 

Another way to describe a persistent set is that it is a smallest nonempty set of states 

which is closed under the successor function. 

In example 2.3, {lastremove,lastinsert} forms a persistent set with auxiliary 

operations insert and remove. If this example is extended by adding a new initial state 

start and a new operation initbuf such that S(start,initbuf) - lastremove, then start 

isn't a member of the persistent set and initbuf isn't an auxiliary of it. If a resource 

only has one state as in the case where every sequence of operations is acceptable, 

the executionu)f any operation on the resource must result in that state. Therefore, it 

forms a persistent set and each operation is an auxiliary. 

It should be noted that there may be more than one persistent set. Consider a 

serial resource with permanent operations f and g such that different sequences are 

allowed depending on whether f executes first or g does. For example, assume there 

are five states with qs being the initial state an .(qs.f) • S(q,f) - S(q,,f) - q, S(q,g) - 

q', S(qs,g) - S(p,,g) - p, and S(p,f) - p*. 

■ ■ -.■..■■.■■... . 
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"♦q' 

-*p' 

J 

Then, {q,q'} and {p(p') i re each persistent sets. 

If the state of a resource is'in a persistent set, then it is easily seen that each 

of the auxiliaries may be executed an arbitrarily many times and that any other 

operations will never again be allowed io execute. Therefore, each permanent 

operation must be an auxiliary of every persistent set. To show that each finite state 

resource must have a persistent set, the following theorem is presented. 

Lomrrm 2.7: If f is a permanent operation on a resource R, then (Vp) (3q) there 
is an arc progression from p to q and f may be applied at q where p and 
q are states of R. 

Proof:  Otherwise, if the state ever became p, operation f would never be 

able to execute again. 

Theorem 2.8: If a resource R is finite state and f is a permanent operation on R, 
then (Vp) Oqfl') S(q,f) - q1, there is an arc progression from p to q, and 
(Vq") if there is an arc progression from q' to q", then there is an arc 
progression from q" to q. 

^q j ^ ->q 

Proof:   By lemma 2.7, (3qQ> such that there is an arc progression u from 
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p to q0 and f can be applied at q0. Let S(q0,f) = PQ'. If for every state 

q" such that there is an arc progression from qg' to q" there is an «re 

progression from q" to qQ, then the proof is done. Otherwise, there Is a 

state qo" and an arc progression ß from qo' to qQ1' such that there Is no 

arc progression from qQ1' to qQ. By lemma 2.7, there are states q^ «nd 

qj' such that S(q1,f) ■ qf and there is an arc progression ß' from qQ*' to 

qj. Note that <*(qQ,f)flß" is an arc progression from p to qj. This 

procedure may then be repeated. Since for j < i there is an arc 

progression from qi" to q|, if there Is an arc progression from qj' to qj 

then there would be an arc progression from q:" to qj, thus contradicting 

the assumption. Therefore, qj t qj+1 and since there are only • finite 

number of states, this process must eventually terminate. 

This theorem specifies a condition which must hold for the synchronization 

relationships. For each permanent operation, it must always be possible to enter some 

persistent set of which that operation is an auxiliary. Thus, it must also always be 

possible to enter some persistent ST* of which all the permanent operations are 

auxiliaries. If this condition doesn't hold, a deadlock can occur when some process ^ 

tries to execute a permanent operation which will never again be allowed to execute. 

Corollary 2.9:   If a resource has at least one permanent operation, then (Vq) (3f) 
f can be applied at q. * 

EQUIVALENT STATES 

It is sometimes possible to reduce the number of states of a serial resource 

without changing the allowable sequences of operations. 
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Example 2.10: Let the synchronization for « shared resource with operations f 
and g be expressed by the regular expression 
(g+f(g<f f f)*g)*(g f f g+f 0)*. The corresponding synchronization 
relationships have states pi, p2, p3, ql, q2, and q3 such that S(pllg) - 
S(ql.g) - S(p3(f) - pi, S(q2,g) - S(pl,f) - p2, S(p2,f) - p3, S(q3,f) - ql, 
S(p2,g) - S(ql,f) - q2, and S(q2,f) - q3. 

The same sequences of operations may be expressed with the regular 
expression (g.f g*f f)* which corresponds to the synchronization 
relationships with states rl, r2I and r3 such that S(rl,g) - S(r3,f) - rl, 
S(r2,g) - S(rl,f) - r2( and S(r2,f) - r3. 

rl< 

r2 

f 

-»>r3 

Definition: States p and q are «quiwdent if for every arc progression 
(p,f!).„(?„.^ff,) there is «n arc progression (qi^)..^-!^) «nd vice 
versa. 

A trivial example of equivalent states p and q is when (Vf) S(p,f) " S(q,f).   If a is an 

arc progression from S(p,f), then (p,f)o£ and (q.f)^ are both arc progressions. 

A necessary condition for a set of states to be equivalent to each other is that 

the same operations must be able to be applied at each of these states. 

Definition-.   States p and q of a serial resource are »im'lar if (Vf) f may be 
applied at p iff it may be applied at q. 
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If states p and q are similar and if whenever there are arc progressions 

(p.^UPn.i.f,,) and (q1f1),..(qn.1,fn) the resulting states pn and qn are similar, then p 

and q are also equivalent. This can be shown inductively on the length of the ar: 

progressions. Since p and q are similar, there is an arc (p,f) iff there is also an arc 

(q,f). Assume that for n there is an arc progression (p.f iUpn.i,fn) M there is en arc 

progression (q,f! Uqn. j,fn). But the resulting states pn and qn are similar so there is 

an arc progression (p.^i)...(?„-i,fnKpn,fn+l) iff WlUq^l^nHi'Vl) ** a,6,> an ,rc 

progression. In addition, if p and q are equivalent and (p.f lUPn-lV and 

(q,f l) ..(qn_l,fn) are arc progressions, then (Vf) f can be applied at pn iff it can also be 

applied at qn and hence pn and qn are similar. Thus, states p and q are equivalent Iff 

for any sequence of operations the corresponding arc progressions 06 from p to some 

state p' and ft from q to some state q' have the property that p' and q' are similar. 

To determine which states are equivalent, the set of states is first partitioned 

into sets of similar states. Next, taking each set of the partition which has more than 

one state, two states within the set are related if each operation which can execute 

from those states results in the same set of the partition. If the operations in the set 

aren't all related with each other, then the set is divided by the relation. This 

procedure continues until no further divisions are possible. States which remain in the 

same set of the partition are equivalent and can be combined, 

Returning to example 2.10, the states are first partitioned as rO - {pl,p2fll,q2} 

and r3 - {p3,q3} since both f and g may execute when the resource is in any state 

from rO but only f may execute when it is in a state from r3. Looking at rO, f taken pi 

and ql into rO and p2 and q2 into r3 and g takes all four states into rO.  Thus, rO must 
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be divided into rl - {pl.ql} and r2 - [pZ^Z). Now f takes pi »nd ql into r2, p2 and 

q2 into r3, and p3 and q3 into rl and g takes pi and ql into rl and p2 and q2 into r2. 

No further divisions are possible, so the new states are rl, r2, end r3 with S(rl,g) - 

S(r3,f) - rl, S(r2,g) - S(rl,f) - r2, and S(r2,f) - r3. 

This algorithm to find equivalent states is essentially the same as that presented 

by Aho and Ullman [AU72, page 124] to reduce finite automata. It was necessary to 

modify it slightly here, though, since there are no final states in synchronization 

relationships and since not every operation can be applied at each state. This was 

done by using whether or not an operation could be applied at a state rather than 

whether or not the result was a final state to divide the sets of the partition. Since 

this algorithm can be used to reduce the number of states, it will be assumed from now . 

on that it has been applied and that the number of states is minimal. 

IMPLEMENTATION 

In order for a description of the allowable sequences of operations on a 

resource based on the synchronization retat'jnships to be a useful tool which can be 

included in a high level programming language, it must be possible to implement the 

relationships. A variable is used to hold the current state. Each operation contains a 

list of those states for which it can be applied. When a process tries to execute the 

operation, this list is compared with the state variable. If there is a match, the process 

continues by executing the operation. Otherwise, it must wai*. For each operation, 

enough storage is needed to contain the values of the states for which the operation 

can be applied. 
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When the process starts execution, it must stora the value of the state variable. 

It needs this value in order to calculate a new state at the completion of the operation. 

During execution, the state variable must be set to be the null state. This is a state at 

which no operation can be applied, It is used to insure that only one process at c time 

may execute on the resource. Thus, any attempt by a process to execute an operation 

on the resource while the state variable is null must fail. After execution has finished 

and the new state has been calculated, a search of the waiting processes is made to 

see if any is attempting to execute an operation which can be applied at this state. If 

there are any, one is selected to proceed and the state is saved, Otherwise, the state 

variable is set to be this new state. 

A list of the processes waiting to execute on a resource is maintained so that 

whenever some process finishes, these can be checked, The list is ordered either by a 

FCFS scheme or else according to process priority. When an operation completes 

execution, each process in turn is checked to see if the operation It is attempting to 

execute may be applied at the new state. The search terminates either wK^n one *uch 

process is found or else when the list is exhausted. 

One way in which the state Which results from the execution of an operation can 

be computed is with a table lookup. Associated with each entry in the list of «tates at 

which an operation can be applied is the resulting state. Such a scheme requires room 

to store a resulting state for each state at which the operation can be applied. 

Another possibility is to number the states in such a manner that for each operation 

there is some function to calculate the new state. However, there is no guarantee that 

such functions, if they can be found, will execute arty faster than the «eerch. 

.   . 
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An alternative to the state variable is to use a boolean variable for each state. 

The boolean associated with the current state ha? the value TRUE and the rest have 

the value FALSE. The null state occurs when »II of these variables are FALSE. This 

implementation can be made more efficiert if each boolean is stored as a single bit. 

The state is then represented as a string of bits. For each operation, the list of states 

at which it can be applied can also be stored as a string of bits. The comparison 

between this list and the current state can be performed by ANOing the two bit 

strings. If the result is zero, the process muot wait. A list still must be searched at 

the conclusion of execution in order to find the next state. However, this search will 

only be made once for each execution of the operation. Any checks which are made to 

see if the operation can b« applied to the current state which fell won't result In a 

search. 

A list of the processes waiting to execute on a resource is ma ntained so that 

whenever some process finishes, these can be checked. The list is ordered either by a 

FCFS scheme or else according to process priority. When an operation completes 

execution, each process in turn is checked to see if the operatton it is attempting to 

execute may be applied at the new state. The search terminates either when one such 

process is found or else when the list is exhausted. 

A modification to the waiting list is to associate a waiting list with each set of 

states for which some operation may be applied. Each operitton will be associated 

with exactly one of these lists. The lists are ordered by a priority scheme as before. 

Now, though, the processes on top of each list are the only ones eligible to execute. 

There is no need to check any of the others.  At the completion Of execution each list 
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cor respohding to some set of states containing the new state must be checked for 

waiting processes. Any process on one of these waiting lists will be able to execute. 

There is no need to check the list of states at which the operation it is attempting to 

execute can be applied. If there are any processes on these lists, one is chosen to 

run. In the FCFS scheme, the value of the system clock when each of the processes is 

put on a waiting list must be saved. This time is then used to make the selection when 

more than one list is checked. 

Example 2 11:  Let a serial resource have states p, q, and q' and operations f, g, 
and  h  such  that  S(p,h) -   ^q.h) - Stq'.f) - P,  S(p,f) - q,  and  S(p*) - 

Sfq'.g) - q'. 

Waiting 

{P.q'} 
call(f) 
call(g) 
call(g) 
call(f) 

1 Ictc 

V  

h 

J^ .. 

g 

f 
~Xt7) 

{p,q} 
call(h) 
call(h) 

An implfcmentation consisting of a state variable and several waiting lists will be used. 

Processes which become blocked while attempting to execute the operations f and g 

will be put on the same watting list since each of these operations may be applied at 

the set of states {p.q'}. There will also be a waiting list for processes attempting to 

execute h. In the diagram above, a process waiting to execute operation f is 

represented by the notation "calKf)". When a process tries to execute t, the state 

variable is checked to see if it equals either p or q'. If it does. Its value Is saved, it Is 

set to the null'state, and the process executes f. Otherwise, the process will be put on 

the waiting list for f and g. When execution completes, if the saved state is p then the 

new state is q and the waiting list for h is checked.   If there are any processes on it, 
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state q is saved and one of these processes becomes unblocked and may continue 

execution. Otherwise, the state variable is set to be q. Likew'se, if the saved state is 

q', then the new state is p and the waiting lists for f :;nd g and for h are checked. If 

they aren't both empty, a process is chosen end state p is saved. Otherwise, the state 

variable is set to be p. Operations g and h ere controlled similarly. 

PROJECTIVE AND 1NJECTIVE RESOURCES 

The implementation as dascribed involves a high overhead. If only simple • 

synchronization problems are to be handled such as the message buffer of example 

2.3, many of the details of this implementation, such as the need to check more than 

one waiting list at the completion of an operation, aren't needed. It is useful to know 

what resources can be considered to be simple in this respect. This section will give 

an answer to that question. 

There are several restrictions which can be made to en operetion on e finite 

state resource which will result in a more efficient implementation of the operation. 

The first such restriction requires that an operation always results in the same state 

independent of the one in which it started. 

Definition: An operation f is projuctiw if (3q) (Vp) if f can be applied at p then 
S(p,f) ■» q. A finite state serial resource is projectitw if every operation 
on It is projective. 

In the message buffer of example 2.3, remove alway« results in lastremove end insert 

always results in lastinsert.  Therefore, the message buffer is e projective resource. 

Example  2.12:    Let  the  regular  expression {ff*g)*  represent  the  etloweble 
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seauences  of  operations  on  a shared  resource.   The  synchronization 
elafonships cons.st of two states p and q where pi.   *e   n.t.al state 

S(pj) " sS.f) - q. and S^g) - P-   Since f always results in state q .na g 
always results in state p, each is projective. 

The state of', projective resource represents only the most recent operation to 

execute on that resource since each operation forgets whatever history was contained 

in the previous state. This implies that there may at most be one more state than 

there are operations, an initial state and a state corresponding to each operation. 

To show that for a projective resource there can't be two similar states p end q. 

let f be any operation wh.ch can be applied at p. Then f can also be applied at q. But 

since f is projective. S(p.f) - S(q(0. Therefore, p and q -re equivalent, which Is . 

contradiction of the assumption that no two states of a finite state resource are 

equivalent. 

Since each projective operation always results in the same state, this resulting 

state is no longer a function of the state from which the operation started. The 

implementation can therefore be made simpler since the resulting state doesn't need to 

be calculated but is a constant. Also, there is no longer any need for an operation to 

remember what the state was when it started. 

Another restriction which can be made to a finite state resource is to require 

that, with respect to each operation, the successor function S is one to one. 

Dofiniiion: An operation f is iuj.ctivc If (Vq) there is at most one state P such 
that S(p,f) - q- A finite state serial resource .s inactive if every 

operation on it is injective. 

Thus, if two diff.r.n. ar» rwulfln th tat. then th.y mu.1 h.v. <M(.r.nt 

operations. 
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Example 2.13:   If the regular expression (fg+gf)* represents the sequences in 
which the operations of a shared resource are allowed to execute, then 
the  COrresnonHino   cwnrhrnnl-jufir.«  rAl«»:«._.u: J.I  _«   -     .   ,*,   .     .   . 

p and 

ch the operations of a shared resource are allowed to execute, then 
corresponding synchronization relationships consist of pn initial state 

nd states q and q' such that SC^f) - q, S(p>g) * q', and S(q,g) - S(q',f) - 
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The resource is injective since p is the only state such that S(p,f) - q and 
S(p.g) « q\ q ,s the only state such that S{q,g) - p, q' is the only state 
such that S(q',f) = p, and there is no state p' such that Sfp'.f) - q' or 
Sip'.g) - q. However, it isn't projective since neither f nor g is a 
projective operation. 

If a serial resource is projective before the equivalent states are combined, then 

it r.ust also be projective afterward. This is trivially true srnce if an operation may 

only result in one state and then states are combined it still will only be able to result 

in one state. However, a serial resource which is injective before equivalent states 

are combined might not be injective afterwards, This can be seen by considering the 

injective resource with S(p,g) - q, S(p,f) - S{p',h) - p', and S(q,f) - S(q',h) - q'. 

States p' and q' are equivalent.   Combining them into a new state p" yields S(p,f) 

S(q,f) - p".   Therefore, the resource is no longer injective. 
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The process of conblning equivdlent states can sometimes be reversed to maKe 

an operation which isn't injective into one that is. Assume that Sip,*) - S(p,,f) - q. If 

there is no arc progression from q to either p or p', then cfsat« ■ new state qj' for ' 

every state qj to which there is an arc progression from q, Also, create a new state 

q'. For each q^ and operation g, if S(qi*) - ^ then let S(qi
,,g) - qj'. Also, let S(p',f) - 

q1. If there was an arc progression from q to p, then a state p" would have been 

created such that S(p")f) - q' and th»re would have been an arc progression from q' to 

p". This procedure would then have continued indefinitely without f ever becoming 

injective. 

Examp!«» 2.13 shows that not every injective resource is projective. On the 

other hand, the projective resource of example 2.12 isn't injective since Sfp.f) - 

S(q,f) - q. The intersection of these two serial resource classes, though, turns out to 

be an interesting class itself. 

Ddfiniiion: An operation is simple wial if it is both projective id injective. A 
resource is simple terial if every operation on it is simple serial (it is 
both a projective and an injective resource). 

For each operation of a simple serial resource, there is only one state from which it 

may start execution and only one state which can result, It is easily seen that the 

message buffer of example 2.3 is such a resource. 

If the several waiting list implementation is used for « simple serial resource, 

each list needs to be associated with only one state. This is because each operation 

may only be applied at one state. This means that at the completion of execution, an 

operation will only check one list to see if any processes wilting can now continue. 
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The boolean state variables can also be considered to be boolean semaphores. The 

result is that each operation starts execution by doing a P on one of these semaphores 

and concludes by doing a V on the senaphore associated with the resulting state. 

If the sequences of operations defined on a serial resource are controlled by 

preceding each operation with one P and following it with one V, then each semaphore 

must be boolean. This is because otherwise if a semaphore ever attained a value of 

more than one, any operation which started with a P on that semaphore would be able 

to execute in parallel with itself. Also, only one semaphore can have a positive value 

when no operation is executing and none can have a positive vVue when one process 

is executing on the resource. Thus, each semaphore may be thought of as a state and 

for each operation the semaphore on which a P is done represents the state that the 

operation waits for and the semaphore on which a V is done represents the resulting 

state. Therefore, the c-<»ss of serial resources which can be implemented with each 

operation preceded by :>ne P and followed by one V is the same as the simple serial 

resources. 

PRIORITY 

When more than one waiting process can start execution from a stf'e which 

results from the currently executing process, a choice must be made. The decision 

criteria is referred to as a priority policy. One such possible poltcy, FCFS, chooses the 

process which has been waiting the longest. The waiting lists act like simple queues in 

this case. Another possible policy is to use the same priority for each process that 

the scheduler does. T'm decision as to which priority policy should be used Is the 

responsibility of the system designer. 
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A warning must be made about the possibility of starvation when a policy other 

than FCFS is used. This can occur it for some state more than one process can start 

execution whenever the resource enters that state. If one of these waiting processes 

has a sufficiently low priority, it might never be chosen. This problem doesn't occur 

with a FCFS policy since the longer a process waits, the higher its priority gets. 

Often when more than one operation may be applied at a given state, it is 

necessary to give processes waiting to execute some operations a higher priority than 

processes waiting to execute the others. 

Example 2.14: Consider again the message buffer of example 2.1 with the 
modification that any sequence of the operations Insert and remove are 
acceptable. In order that the most current message is received, insert will 
have priority over remove. 

Another example is a storage allocator on which the operations getspace and 

releasespace are defined. Releasespace has the side effect that it will collapse any 

two adjacent blocks of free storage into one. Therefore, it will have priority over 

getspace. 

The priority relation among the operations for a state must form a partial 

ordering. This means that for operations f and g, exactly one of the followirig is true. 

Either f has priority over g, g has priority over f, or they have equal priority. In 

addition, this relation must be transitive. This means that if f has priority over g and g 

has priority over h then f also has priority fver h. However, since the operation 

priority is defined for each state, it is possible that the partial ordering between two 

operations is different for the various states at which they each may be applied, This 

may be done to prevent starvation.   For instance, consider example 2.14 again.  After 
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the buffer has been written twice, procesees trying to receive information from It will 

bo given a chance. Three states are needed with S(p,insert) - p', S(p',lnsert) - 

S(p",insert) - p", and S(p,remove) - SCpVemove) • S(p",r8move) ■ p. 

r 
TnserT 

insert                               insert 
 »P' -^ ^P" 

remove /      remove / remove 
I      II        —ft   m  i      mi    i   ■■■ipi mi t(         , . r^ ,—i , ,  

Operation insert is given priority at p and p' and remove is given priority at p". 

It can be shown that p, p', and p" are equivalent. They can't be reduced, 

though, due to the priority differences. The algorithm described above fo find 

equivalent states must therefore be modified to handle priority. An initial partitioning 

of similar states is made as before. For each set created by the partitioning, the 

operations which can be applied at the states of the set must have the same relative 

priority at each of those states. If they don't, then that set must be divided. After 

this step in the example, the partition would be (p,p'} and {p"). The rest of the 

algorithm is then applied. 

The implementation of operation priority is simplest when the several waiting 

list policy is used. If operations f and g may be applied at some state with f having 

the higher priority, then when the resource enters that state the welting list for 

processes trying to execute f is checked. Only if this list Is empty is the one with 

processes trying to execute g considered. A problem arises if f and g may be applied 

at exactly the same set of states. Then processes trying to execute these operations 

wait on the same list.   This rule must be altered whenever one of these operations has 
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priority over the other at any of these states where they can be applied.   In that case, 

the waiting list must be divided. 

In the single waiting list implementation, the processes are ordered according to 

which operations they wait on. However, problems arise when a partial ordering of 

the operations can't be made. This can occur when one operation has priority over a 

second at some state but the priority is reversed (or they both have the same 

priority) at another state. Another case is when the transitive law doesn't hold. An 

example is when an operation f has priority over an operation g at or» state, g has 

priority over h at a second state, and h has priority over f at a third. When such a 

situation occurs, the entire wailing list might have to be searched for each priority 

class. 
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8'(p',t)    - {«(PAP) 'f ^P.f) * F 

. j(p,f) otherwise 

r(q,0     - («(q.O.p} if «W) ( F 

. {(q.f) otherwise (Vq < K) 

corresponds   to  the  regular  expression  R*.    If  p < F  and Kq.f) -  P  then  «'(q.O - 

{«(q.O.p} - (Pi - «(q.f)   Therefore, F may be replaced by P - F-{p} in the definition of 

«'.   Since (Vq' i P) (Vq i Kulp'}) (Vf « X> if q' i «'(q.f) then p < «'(q.f). a new final state 

q" can be created to replace {q'.p} and q' can be deleted.  The states which can result 

from reading a symbol when the state is q" must be the same as those which c 

result  when  the  automaton  is in either state q' or  state p.   Therefore, W.f) 

{r(q',f)18'(p,f)}.   By renaming each new state q" representing {q'.p} to be q', the finit 

automaton is changed so that 

8'(p',f)    - 8(p,f) 
«'(q.f)      - {«(q)f)(8(p,f)}        (Vq < F-{p}) 

- 8(q,f) otherwise 

Notice that (Vf < 7) «'(p.f) - «'(p'.f) and therefore p and p' are equivalent. Thus, if 

p < F they can be combjned. Otherwise, if nothing can result in p then it can be 

deleted. In either of these cases, the initial state can be renamed to be p and the 

resulting finite automaton is (K,I,«',p,F) where «'(p'.f) is no longer defined. 

Let M - (K.Z.J.p.F) and M - (KM'.B'.pT) be finite automata corresponding to 

regular expressions R and R' such that KnIC is empty. For f not In I define (Vq < K) 

«(q,f) to be a dead state and for g not in 2' define (Vq < K') «'(q.g) to be e dead state. 

The finite automaton M^ - (KuKMuI',8,'1,P'rl) where 

i"Aq,f)   - «(q.O (Vq < K-F) 
- Wq.OW.f)}      ^q < F) 
- 8'(q.f) (Vq < K') 
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and where F"j - FuP if p' i P or F"j - F' otherwise corresponds to the regular 

expression RR'.   The finite automaton M*^ - (KuK^fp^^UlM^iPTV where 

8M2(P7) - {«(p.fxaxp'.f)} 
a"2(q,f)   - «(q,f) (Vq < K) 

- «'(q.f) (Vq ( IT) 

and where 

F"2   - FuF'u{p"} if p ( F or p' ( P 
- FuF' otherwise 

corresponds to the regular expression R+R'. If Znl' is empty and I and 5' are 

deterministic, then so are t'\ and «"g since (Vq ( K) (Vf i IuX*) either f isn't In £ and 

8(q,f) is dead or else f isn't in I' and {'(p'.f) is dead 

RESTRICTED REGULAR EXPRESSIONS 

As has already been shown, the desired sequencing of operations on any finite 

■ 

state   serial   resource   may  be  expressed  using  a  regular   expression.    Since   for 

implementation reasons a system designer might wish to restrict himself to simple 
I 

serial resources, it would be helpful to know what subclass of regular expressions 

provides exactly the synchronization needed for these resources.  In an attempt to do 

this, the synchronization provided by several subclasses will be examined. 

Dafinition: An initial loop regular expression is defined recursively as follow». 
A regular expression R* is initial loop. RR' is initial loop if R is and R+R' is 
initial loop if either R or R' is. No other regular expression is Initial loop. 
A final loop regular expression is defined similarly. A regular expression 
R* is final loop. R+R' is selection final loop if either R or R1 Is final loop 
and RR' is (selection) final loop if R' is. 
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'     Some examples of initial loop regular expressions are f» f*g. »nd fVh.   The regut.r 

expressions f* fg*. and fg*+h are final loop. 

Definition: A r^riaed regular expression is also defined recorsively. A .ingle 
f symbol regular expression is restricted. If R is reslncted »^ "»tther 

initial nor final loop then R* is restricted. If R «nd R are restrcted and 
have no symbols in common, then R+R' is restricted I '\ »^ ^' ^ 
and PR' is restricted if either R isn't final loop or else It isn t select.on 

final loop and R' isn't initial loop. 

The general requirements for a regular expression to be restricted are that no symbol 

may be used more than once and that subexpressions of the form R* must occur In the 

context R'R*R" where R' isn't final loop and R" isn't initial loop. The exceptions ere 

that R" may be omitted provided that nothing else may follow R* and the whole 

expression may take the form R . 

To help understand which regular expressions are being excluded, consider fgt, 

I (fg*)» fVh. 'V. »"d (^h)e.   None of these is a restricted regular expression.   In 

the first, the symbol f is repeated twice. In the second, R - (fg*) is final loop and 

therefore R* isn't restricted. In the third. f*g+h is of the form R.R' and is initial loop 

so it isn't restricted. The next violates the condition of a final loop subexpression 

being followed by an initial loop subexpression. Finally, fg* is final loop and therefore 

(fg*+h) is selection final loop and can't be followed by anything. Regular expressions 

of the form (R*)* aren't restricted since R* is initial loop. However, the same sequence 

of symbols can be represented by the restricted regular expression R*. 

As might be expected, the rules for constructing a finite automaton from a 

restricted regular expression can be simplified. In addition, several interesting 

properties are true of the finite automata sp constructed. 
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Thooram 3.1:    For  a  restricted regular expression R with the corresponding 
finite automaton (K.I.B.p.F) the following properties are true. 

Properly 3.1.1: Either R is final loop or (Vq i F) (Vf * I) »(q,f) is dead. 

Property 3.1.2: (Vf ( I) (Vq.q' < K) either »(q,f) or 8(q,,f) is dead. 

Property 3.1.3: (3f * I) «(p,f) isn't a dead state 

Properly 3.1.4: Either R is initial loop or (Vq i K) (Vf i I) «(q.f) * p and 
p isn't in F. 

Property 3.1.5: If R is simp e (not selection) final loop, then there is 
only one state in F. 

Furthermore, let (K.I.B.p.F) be the finite automaton corresponding to R and 
(K,,r,«',p,,P) correspond to R'. Then (K-F.Z.ij.p.lp}) corresponds to R*. 
either ((K-F^KMuI'^.P.F*) corresponds to RR' or there is only one state 
p" < F and (Ku(K,-{p'l),IuI'l«3,p,F') corresponds to RR', and 
(KlKKXp'D.SuI'.a/j.P.FuF') corresponds to R+R' where 

if l(q,f) < F 
otherwise (Vq < (K-F)) 
if «(q,f) < F 
otherwise (Vq < (K-F)) (Vf i I) 
(Vq < K') (Vf < 2') 
(Vf ( T) 
(Vq ( K)(Vf < I) 
(Vq i (K'-{p'})) (V* ( V) 
(Vf < I') 
(Vq < K)(Vf i I) 
(Vq < (K'-{p'})) (Vf < V) 

Any arguments for which l^ *3' or *4 8re u^efined 8rB dead- 

Proof: The proof is based on the invariance of the properties over the 

construction of the finite automaton. The details are presented In the 

Appendix. 

Notice that for the finite automaton constructed in this manner from a restricted 

a^q.f) - P 
- 8(q,f) 

l2(q,0 -P' 
- «(q,f) 
- «'(q.f) 

63(p",f) 
»3(q,f) 

- «'(p'.f) 
- I(q,f) 
- 8'(q,f) 

84(p,f) 
«4(q,f) 

= BXp'.f) 
- «(q.f) 
- 8'(q,f) 
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regular expression, 6 is determinislic. Also, for each symbol f thsre le at most one 

state q such that j(q,f) isn't dead. This means that for each operation of the 

corresponding set of synchronization relationships there is at most one state at which 

it can be applied. Therefore, the corresponding resource must be simple serial. In 

addition, the only states which can be equivalent are those for which no operations 

may be applied. The result is that the algorithms to make the synchronization 

relationships deterministic and to remove equivalent states aren't needed. All that 

need be done is to combine all of the states at which no operations can be applied 

Z EXPRESSIONS 

Next, the relationship between restricted regular expressions and 

synchronization relationships will be examined. It will be shown that if the 

synchronization for a shared resource can be expressed using s restricted regular 

expression then the resource must be simple serial. However, there are some simple 

serial resources for which the synchronization can't be expressed using a restricted 

regular expression. 

In order to characterize those synchronization relationships for simple serial 

resources which can't be written as restricted regular expressions, It will be necessary 

to study groups of three arc progressions such that the first and second have the 

same final state and the second and third have the same initial state. It will be 

necessary to require that any given state may occur in at most two of these arc 

progressions. However, there is no requirement that the first or third can't be null. 

By a null arc progression is meant one from a state to itself which contains no arcs. 
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Definition. A Z exprrnnion from a state p to a state q consists of arc 
progressions oc from p to some state qn, ß - (c|Q|fp..>(c|n_j,fn) from some 
state qQ to qn, and t from qQ to q such that (Vi, 0<i<n) qj t p, (Vj, 0<j<n) 
q: t q, (Vi, 0<i<n) there are not two arcs (qj,f) in oc and (qj,g) in 7, there is 
no arc (qQ.f) in <^i and there is no arc {qn,f) in y. 

Several conditions which must be true of Z expressions but which aren't explicitly 

stated may be derived from this definition. One is that qQ t qn. Otherwise, either y is 

empty and q - qg - qn or else (qn,f) - (qQ.f) is in y for $ome symbol f from the >>put 

alphabet. Another is that qQ t p. Otherwise, either ot is empty add qn - p - qQ, 

violating the above condition, or else there is an arc (p,f) - (qQ,f) in od. Finally, if p - q 

then qQ »* q and qn t p. If this wasn't true, then p - qg or q - qn. Thus, neither ot , 

nor y can be empty when p ■ q. 

As an example, consider the synchronization relationships with states p, p', q', 

and q and operations f, f, g, g', h, and h' such that S{p,f) ■ SUV ',) - p', S(p,f') ■ q't 

S(q,,h) - q, and S(q,h') - S(p^g,) - p. 

Then the arcs (p,f), (q'^), and (q',h) form a Z expression from p to q. Also, the arc 

(q',g) forms a Z exptession from p' to q' for which the oi. and y arc progressions are 

each empty. 

In what follows, it will sometimes be easier to deal with Z expressions restricted 

such that oc and ß have only their final states in common and ß and y have only their 
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initial states in common.   It will also be required that p may not occur in u other than 

at the start and q may not occur in y oHier than at the end. 

Dofitdtion:   A »impl« Z «xprtsuhn from a state p to a state q consists of a Z 

expression o^ - (PÖ«l)-(Pm-l»8m' ^ " ^O«*P-ton-lV' "^ T where U '' 
from p ■ PQ to qn and y is from qQ to q such that (Vi, 0<l<n) there is no 
arc (qj.f) in oc or y, (Vj, 0<j<m) p H pi, and there is no arc (q,f) In y. 

Actually,  the  use of simple  Z expressions isn't  really a restriction since ever/  Z 

expression may be reduced to a simple Z expression. 

Lemma 3.2;   If there is a Z expression from a state p to a state q, then there 
also is a simple Z expression from p to q. 

Proof: Let u - (Po.8i)-(Pm-i.gm). fl - (<«0',1)-•K-l-V' and T be « Z 

expression from p - PQ to q. If (3j, 0<j<m) p; - p, then 

(Pj.gj+l)..(pm_i,gm), /?, and y form a Z expression from p to q. If there is 

an arc (q,r in y, then y can be written as yiq,f)yn whert y* is a (possibly 

empty) arc progression which doesn't contain such an arc and oc, ß, and 7' 

form a Z expression fron p to q. If (3i, 0<i<n) there is an arc (qj,f) in u, 

then (3j, 0<j<m) qj - pj. By the definition of a Z expression, there is no 

arc (qj.g) in y so (P0.g1UPj-i.gj). i%f\)-M\^\\ »"d t form a Z 

expression from p to q. Likewise, if (3i, 0<i<n) there is an arc (qj,f) in y, 

then y can be written as f'^Ot" where y" is from qj to q. By the 

definition of a Z expression, there is no arc (qj.f) in pd so ot, 

(qiifi+l)...(qn_lifn), and y" form a Z expression from p to q. 
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PERSISTENT SET ENTRY STATES 

Of particular interest will be Z expressions from the initial state to what may be 

regarded as the final states. In the conversions from a restricted regular expression 

to a finite automaton, it may be seen that the only final state of a loop was its initial 

state and that either the regular expression was final loop or else any final states had 

no nondead successors 

Definition: An entry Hate of a persistent set is an element q of the persistent 
set such that either q is the initial state of the resource or Oq', q' not an 
element of the persistent set) (3g) S(q,

fg) - q. 

Let the synchro-rzation for a serial resource be expressed by the regular expression 

(f+rhKgh)*. The synchronization relationships have three states p, q, and q' such that 

S(p,f) - S^'.h) - q and SW) - S(q,g) - q1. 

The states q and q' form a persistent set with g and h being the auxiliary operations. 

Since p isn't in the persistent set, S{p,f) - q, and SW) - q', both q and q' are entry 

states into the persistent set. Notice that (p,f), {q\h), and < form a Z expression from p 

to q' and (p.f), (q.gV and < form a Z expressirn from p to q. The presence of these Z 

expressions can also be deduced from the following result 

Ijfimma 3.3: If some persistent set has more than one entry state, then the 
initial state of the resource p isn't in this set and there is a Z expression 
from p to each of these entry states. 
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Proof: If p is an element of the persistent set, then every state must also 

be in the persistent set and it can be the only entry state. Otherwise, let 

q and q' be entry states for the persistent set. There must ba arc 

progressions u from p to q, W from p to q', y from q' to q, and T' from q 

to q'. Then « and y form a Z expression from p to q' end U* and T' form 

a Z expression from p to q. 

The final states of a restricted regular expression can now be characterized. 

Umma 3.4: If the synchronization for a resource can be fxPress^ w;th » 
restncted regular expression, then the set of persistent set «"^ st8tes 

and states with no nondead successors is the same as the set of final 
states produced using the construction ^n tr.^orem 3.1. 

Proof:   It will also be shown that there must be an arc progression fro,', 

every state to a final state.   The proof is by induction on the complexly 

of the regular expression.  For a single element regular expression this is 

certainly  true.   Assume »hat  it  is true fur  R.   Since there Is  a> arc 

progression from every stele to 8 final state, there must be  n     ire 

progression from every state to the initial state p in R*.   Thus, all    f the 

states form a persistent set and there are no states such that every 

successor is dead.  Since p is the only final state, the lemm« is true for R*. 

Assume that it is true for R and R'. For RR« and 62 since tSere must be an 

arc progression from every state of K-F to a state of F in R, there must 

be an arc progression from every state of K-F to p' in RR\  Atso, there is 

no arc progression from any state of IC (including p') to a state of K. 

Thus, every state of K-F has a nondead successor and none can b« in any 

48 
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persistent  set.    Since (Vq i K') B^q.f) - BXqA every successor of q Is 

dead in RR' iff they all are de&d in R'.  Also, p' is the only state in K' such 

that «2<q.f' " P' for a state ^ * K'F-   Thus' a st8t€ ^ < ^ is a Per6iäter,t 

set entry state in RR' iff it also is in R',   Since the final states for RR' is F' 

and since there is an arc progression from every state of IC (including p') 

to some state of F', the lemma and hypothesis are true for RR1.   If 83 is 

used, then there can only be one state q in F.  Thus, q is the only state of 

K such that 83^,0 < K'.   Since there is an arc progression from p' to 

every element of F' in R', there must also be an ire progression from q, 

and therefore from every element of K, to every element of F'.   Thus, no 

state of K has all dead successors.  As with S^ ,here "8 no q ( K'^p'} such 

that 83(q,f) < K for some f and also (Vq < K'-lp'}) 83(^0 - 8,(q,f).   Thus, no 

state of K can be in a persisten". set and a state of «Mp1} is a persistent 

set entry state or has no nondead success's in RR' iff the earn» is true in 

R'.   Since the final states of RR' ere F', the lemma and hypothesis must be 

true for RR'.   Finally, for R+R', since ^nere must be an arc progression 

from every state in R to a state in F and there must also be an arc 

progression from every state of R' to a state in P, the hypothesis will be 

true in R+R'.   For every state q i {K-{p]M>C-{p'}) an operation may be 

applied at q in R+R' iff it could be applied at q in R or in R' and the 

resulting state will be the same.  Also, by properties 3.1.3 and 3.1. •»> p and 

p' have at least one nondead successor and no arc results in these states 

in R and R' and the same is true for p in R+R'.   Therefore, a state will 

have no nondead successors or be a persistent set entry slate in R+R' iff 

the same was true in either R or in R\ 1 

I 
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SYNCHRONIZATION AND RESTRICTED REGULAR EXPRESSIONS 

It can now be shown that each restricted regi,: expression describes the 

allowable sequences of operations for some simple h, -esource such that in the 

synchronization relationships there is no Z expression from the initial state to any 

state q such that either no operation may be applied at q or else q is a persistent set 

entry state. 

Thooram 3.5: A shared resource on which the allowable sequences of 
operations are given by a restricted regular expression is simple serial 
with no Z expression from the initial state to a final state. 

Proof: The lack of'a Z expression from the initial state to a final state is 

invariant over the construction of the finite automaton. The details are 

presented in the Appendix. 

Corollary 3.6:   An elementary path expression without curly brackets is simple 
serial and contains no Z expression from the initial state to itself. 

This last theorem shows that every resource for which the allowable sequences 

of operations can be given by a restricted regular expression is simple serial but that 

not every simple serial resource can have the synchronization for it expressed in this 

manner. The next question is whether or not the synchronization for every simple 

serial resource with none of these Z expressions can even be expressed using 

restricted regular expressions. 

Thaorom 3.7: A simple serial resource with no Z expression from the initial 
state to a state q such that either no operation may be applied at it or 
else q is a persistent set entry state can be written as a restricted 
regular expression without repealed names. 
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« 

Proof: The proof shows that the synchronization relationships can be 

split into nonempty parts reversing the construction from a restricted 

regular e.press.on or else a loop can be broKen if there are no Z 

expressions,  The details are presented in the Appendix. 

It has been shown that th*re are some simple serial resources for which the 

synchronization can't be g.ven using restricted regular expressions, Perhaps allowing 

operation names to be repeated would help to solve this problem. Unfortunately, this 

is not the case. 

Thtorom 3.8: The synchronization for ^ /init« ^^/S^Vo.l 
described using a regular express.on m wh.ch the

t,;;
n

n
d

a
,^"8

m 0
y
r ^ 

restricted regular expression hold but in wh.ch operat.on names may be 

repeated. 

Proof:   It will be shown that for every regular expression R there is a 

regular expression R' such that R and either R' or (R'+0 express the same 

strings and the conditions for a restricted regular expression hold where « 

is the null expression.   Since whether or not the null string is acceptable 

is unimportant when expressing the synchronization of operations on a 

resource. R' satisfies the theorem.   The proof will be by induction on the 

complexity of the expression.   Clearly, a single symbol expression is a 

restricted   regular   expression  which  is   neither   initial   nor   final   loop. 

Assume that R and R' satisfy the conditions and are neither initial nor final 

loop.    Then  R+R', RR^R.  W**\ *****'>  a"d  RR*R+R  ^  Sa,iS,y  ^ 

conditions and none is either initial nor final loop.   Since R* - (R+O* - 

(RR*R+RW. (R+0+R' - IW*0 " (R*0*(R'*0 - (R*R><. K™ ' RR,+R' 

(R+0R. „ RR'.R', and (R+(KR'*0 - (RR>R+R>< ^e theorem is proved. 

üel _      _ .   
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Another change which ctn be made is to remove the condrti -ns but to continue 

to prohibit the repeating of operation names. 

Dafinition. A nonropeai ragular expreinon is a regular expression in which 
subexpressions of the form R+ - RR* and R+<, where ( is the null 
subexpression, are allowed but in which no operation name is repeated. 

The symbol < may be simulated by creating a null operation f which will never be 

called.   Then f* is the same as the symbol (, 

Lemma 3.9:   For a restricted regular expression, the initial state of a final loop 
must be a final state. 

Proof: The proof is by induction. If the regular expression is of the form 

R*. then by theorem 3,1, the initial state is a final state. If the regular 

expression is of the form RR', then the final states of R' are final states. 

Since RR1 is final loop iff R' is, if the lemma holds for R', then it holds for 

RR'. Likewise, if the expression is of the form R+R', then the final states 

are those of R and R', Also, R+R' is final loop iff either R or R1 is. Thus, if 

the lemma holds for R and R', then it holds for R+R1. 

Theorem 3.10; A serial resource on which the allowable sequences of 
operations is given by a nonrepeat regular expression either isn't simple 
serial or else the synchronization can be expressed using a restricted 
regular expression. 

Proof:   If a nonrepeat regular expression isn't restricted, then one of the 

following situations mu I he true. 

Coie 1: A subexpression has the form R* and R Is restricted and simple 
final loop. If R has the form R'*, then R and R* are equivalent so 
the subexpression could have been written as R. Assume that R has 
the form R'R"*. Since R is restricted, R' can't be final loop and by 
theorem 3.1, properties 3.1.1 and 3.1.3, its initial state p can't be 
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one of its final states. Thus, no operation of R" can be applied at p 
in R and since p is also the initial state of R, none can be applied at 
the initial state of R*. However, after some string of R' is executed 
in R*, any operation which can be applied at either the initial state 
of R' or fie initial state of R" can be applied. Thus, this state p' 
can't be equivalent to the initial state. Any operation which can be 
applied at p.in R' can be applied at the initial state of R* and it p'. 
Therefore, R* can't be simple serial. 

Cote 2: A subexpression has the form R* and R is restricted and selection 
final loop. There must be a subexpression of R of the form 
R R * + R3 where Rj is neither initial nor final loop. Thus, no 
operation which can be applied at the initial state of Rg* can be 
applied at the initial state of R. By lemma 3.9, the initial state of 
R2* must be a final state of R. Therefore, there must be a state p' 
in R* at which everything which may be applied at either the initial 
state p of R or at the initial state of R2* may be applied. By 
property 3.1.3 of theorem 3.1, p and p' can't be equivalent but 
everything which may be applied at the initial state of R may be 
applied at both states.   Thus, R* isn't simple serial, 

Cote 3: A subexpression has the form R* and R is restricted and initial 
loop but not final loop. Thus, R has the form R^R" where R" is 
neither initial nor final loop and its ini ial state can't be a final state. 
If no operation other than those contained in R can be applied to 
the final state of R*. then R* can be written as (R'+R")*, which is 
restricted. Assume that operation f can be applied at the final 
states of R*. At the initial state of R*. f may be applied along^with 
any operations which may be applied at the initial states of R' and 
R". However, if a string from R' executes, only those operation 
which may be applied at the initial states of R' or R" may execute. 
Therefore, there are two distinct states at which these operations 
may execute and R* isn't simple serial, 

Ca«c 4: A subexpression has the form R+R', R is initial loop, and both R 
and R' are restricted. Thus, R has the form R^ (R2 is optional). 
Any operation which may be applied at the initial states of K^ and 
R' may be applied at the initial state of R+R'. However, after a 
string of operations from Rj have executed, the operations which 
may be applied at the initial state of Rj may be applied but those 
from R' can't be.  Thus, R+R' isn't simple serial. 

Case. 5: A subexpression has the form RR' where R is final loop, R is 
initial loop, and both R and R' are restricted. Thus, by lemma 3.9, 
there is a loop Ri* in R such that the initial state of Ri is a final 
state of R. Also, R' has the form R/R". Let p be the initial state of 
Ri in RR'. Any operation which may be applied at either p in R^ or 
at the initial state of R2 may be applied at p in RR'. However, after 
a string of operations from R2 has executed, thos© operations which 

i^J 
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may be applied at the initial state of R2 may be applied but those 
which can be applied at p in R can't be.  Therefore. RR' isnt simple 

sarial. 

CM« 6: A subexpression has the form RR' where R is selection final loop 
and R and R' are restricted. As with case 2, R must have a 
subexpression of the form (R1R2* * R3) and the initial state of Rg 
and the final state of R3 must be final states of R. Any operat.on 
which can be applied at the initial state of R' can be applted a both 
of these final states in RR'. The operations which can be applied at 
the initial state of R2 in R can't be applied at the final state of R3, 
however.   Thus, RR' isn't simple serial. 

CM« 7: There is a subexpression of the form R+ where R is restrictsd. If 
no operation not in R can be applied at a final state of R , then R 
and R* are the same for synchronization purposes. Assume that t 
isn't in R but can be applied at a final state of R . It can t be 
applied at the initial state of R+, but it can be applied after some 
sequence of R. Thus, there are two different states at which .mtial 
operations of R can be applied and R+ isn't simple serial, 

C04.« 8: There is a subexpression of the form (. Since R« - R - «R, «* -<. 
and (R+O* - R*. assume that ( is included in a subexpression of the 
form (R+O, If the initial state of R is a final siate or if no operation 
not in R can be applied at the final states of R, then (R+O - R. 
Assume that R is simple serial, the initial state p of R lent a final 
state, and there is at least one operation f not In R wh.ch can be 
applied at the final states of (R+O. If g is an operation of R which 
can be applied at its initial state, then it can't be applied at any 
other states, including the final states. However, f can be applied at 
both the initial and final states of R. Therefore, (R+O isnt simple 

serial. • i 

« 

Thus,  no  nonrepeat   regular exp-ession describes  the synchronization for  a simple | 

serial resource which can't be described using a restricted regular expression. 

RELATIONSHIP TO CONTROL STRUCTURES 

As shown in chapter  II, the synchronization relationships for a simple serial 

resource may be thought of as a directed graph with each state represented by a 
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node and each operation represented by an arc.   This graph has the property that 

there are src progressions from the the node representing the initial state to each of 

the other nodes.   Flowcharts with th   property that each arc represents a different 

computation with one entry and one ewt point «re also equivalent to the same set of    * 

directed graphs. 

Regular expressions and control structures from programming languages can also 

be compared.. The expression RR' means first R and then R' must occur. Likewise, 

concatenating two computations means do the first and then do the second. The 

expression R* means that R occurs zero or more times and the statement 

WHILE p DO R means that R will be executed zero or more times. The expression R+R' 

means that either R or R' must occur and the statement IF p THEN R ELSE R' means 

that either R or R' will be executed.  Since 

DO R UNTIL p    »    Rj WHILE NOT p DO R 

and R* - RR*, they each produce the same sequences.   Finally, R+( means that R may 

optionally occur and IF p THEN R means that R will opttonally be executed. 

The results that are given above about the relationship between regular 

expressions and simple serial resources can be applied to flowcharts in which each arc 

represents a different computation and programs which are written using the above 

control structures. Theorem 3.10 shows that only those flowcharts without Z 

expressions from the starting node lo a node with no successors or which is a 

persistent set entry node can be written using the above control structures without 

repeating some computation. Furthermore, theorem 3.5 shows that these flowcharts 

can be written without the statements IF p THEN R and DO R UNTIL p. This result is an 

extension of theorem 1 in Peterson, Kasami, and Tokura [PKT73]. 
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An extension to regular expressions which might be useful is to allow a 

subexpression to be "exitted". In order to do this, the notation would be extended to 

allow a label to be applied to a subexpression. Then an indication could be made 

within the labeled subexpression to jump to the point immediately following it. 

Exampl« 3.11: The regular expression (fg)*(fh+h) can be written R!(f(g4-«R))*h. 
The subexpression (f(g+-»R))* is labeled by R and the notation -♦R means 
that h is the next symbol to be considered. 

This extension doesn't help though in trying to find a notation to express the 

synchronization for simple serial resources Cven a simple expression like that in 

example 3.11 is not injective and therefore isn't simple serial, Furthermore, theorem 3 

of Peterson, Kasami, and Tokura shows that there are still simple serial resources for 

which the synchronization can't be expressed using a regular expression without 

repeated names even when this exit notation is allowed. 



CHAPTER IV 

ELEMENTS 

The important property of a simple serial resource is that an operation may only 

be applied at one state, Thus, only one comparison needs to be made to determine 

whether or not an operation may execute. Assume, however, that an operation g may 

execute if the history of executions contains the operation f. Operation g may be 

applied at many states but most of the information contained in these states is 

unimportant to g.   If the. state can be divided into two parts, one of which indicates 
t 

whether or not f has executed, then g would only need to check that part to determine 

whether or not it could execute. Furthermore, the part would have only one value at 

which g could be apolied. In an attempt to study this issue, some modification to the 

notion of state will be made. 

For each resource, a new class of object which has a finite number of distinct 

member', will be introduced. Each state, instead of being a single entity, will now be a 

mult.set of these objects. A multiset [K69, page 420] Is a set in which members may 

have multiple occurances. The notation U+V will represent the multiset in which each 

member of the class occurs the number of times it occurs in U plus the number of 

times it occurs in V. The notation n»U will represent the multiset in which the number 

of occurances of each member is n times the number of its occurances in U. 

Definition:  An object which is used in the composition of a state is an element 
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Thes» elements, are not each confined to a single state but may be Included in several 

of them. The states are distinguished from each other accordinj to which element« 

they contain. Thus, no two distinct states are exactly the same multiset of element«. 

Also, since a state is represented by a group of elements, checking the state variable 

to see if an operation may execute consists of testing to see that one of several 

coilections of elements is included in the current state. 

STATE TRANSITIONS 

To convert a state p into a state q requires that every element of p which Isn't 

in q must be removed from the resource state and every element of q which Isn't in p 

must be added. 

Definition'. A »ate trannUion is the removal of some of the elements from the 
state of a shared resource followed by the addition of some elements. 
The notation which will be used for a state transition is <name>!{<elements 
to be removed>) *♦ {<elements to be added>). The <name> part is optional 
and will only be included when necessary. 

« 

It   may  be  possible  for  a  state  transition to  be used  at  several  states.    Thus, 

{el} -» {e2) can transform the state {el,e3) into {e2,e3} and the «täte {el,e4} into 

{e2,e4}. 

An operation on a serial resource will be associated with a collection of state 

transitions. For each state at which the operation can be applied, one of these 

transitions will produce the appropriate resulting state. When a process attempts to 

execute the operation. It will be delayed until all of the elements which are removed 

by one of these state transitions are present in the current state. These elements are 
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then removed and at the end of execution the state transition is completed by edding 

some elements to the state. If more than one process may now continue. . choice 

must be made. Note that in general an operation doeant need to remove all of the 

elements from its starting state but just those which aren't in the resulting state. 

However, in order that another process doesn't start executing on the resource before 

thir operation finishes, it must not "be true that a state transition associated with .ome 

operation removes a subset of the remaining elements, 

Example 4.1,   Consider  the regular expression ((fg+gf)h)' tnd the resulting 
'states   pi.  P2.  p3.  and  pA  with  S(pl.f) - P2.  ^P«); P3» ^2*)- 
S(p3.f) - pa. and S(p4,h) - pi.   Let pi be composed of the elements e, al, 
and a2, p2 - {e.bl.a2), p3 - {e.al.bZ}, and p/» - {e,bl,b2). 

'pi - {e,al.a2} 

p2 - {e,bl,a2)      ^f 

a   --»p3-{t,Bl,b2} 

h _. 

p4 - {e,bl,b2} 

If tWe.al} -> {e.bl} is associated with f, t -.{e^} -» {e,b2} is associated 
w.th g and th:{bl.b2}-Mal.a2} is associated with h. then the proper 

synchronization results. 

Several things should be noticed in this example. First, f and g c.n each be 

represented by just one state transition. Second. tf only removes e and al from the 

current state. When f executes causing a transition from state pi or p3. a2 or b2 

respecti ,ely remains part of the current state. Likewise, not all of the elements .re 

removed from the current state when g and h start execution. 

While a state transition doesn't always remove all of the elements of the state at 

the start of execution of the associated operation, frequer/ly it must remove some 

■ 
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elements which also occur in the resulting state. Of course, It must then add thote 

elements bark to the state at the end of e*ecution, In example 4.1, tj and tg remove 

and add e to the state. The reason why e is used in thf« manner is that otherwise tf 

and tg would remove {al} and {a2} respectively. Since these are disjoint »ets of 

elements which are both contained in pi, the start of execution of f would leave the 

elements for which tg was waiting in the state. Therefore, a process could «tert 

executing g before f completed, violating the serial nature of the resource. The 

solution to this problem is to create a new element which is contained in every state. 

Then whenever state transitions remove disjoint subsets of a state, they must also 

remove and add this new element. The state transition t^, doesn't need to remove e 

since this is the only element remaining during its execution and none of the 

transitions remove just e. 

In addition to assuring that operations execute serially, there I« another 

situation when the state transition from a state p to a state q caused hy an operation f 

must both remove and add the same element. This occurs when the set of elements , 

which must bo removed ('oose which are contained in p but not in q) also form a 

subset of some state p' different from p. If f can't be applied at p' or if this state 

transition results in the wrong itate when applied at p' then the state transition must 

additionally weit on some element e which is in p but not In p'. 

Consider the following modification to example 4.1. 

Example 4.2: Let there be five states with S(pl,f) - p2, S(pU) ■ P3» S(p2«) - 
p4, and S(p3,f) - p5. It is irrelevant what operation« may be applied et 
p4 and p5. 
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pl -{al,a2} 
_t—>p2 - {bl,a2} >P* " {bl,b2} 

T^->p3 - {al,b2) } >r>5 - {e') 

The   state   transition   (a2} ■♦ {b2}  is   associated  with  g   and   the   state 
transitions {81,82} -» {bl,82| and jal.W) -» {e1} are ^sociated with f. 

If {al} -» {bl} was used instead of {al,82} •♦ {blIa2} then f could also teke p3 to p4. 

An element e which occurs in every state isn't needed here since thf re aren't any 

state transitions which remove disjoint subsets of a state. Another modification it. not 

to allow f to be applied at p3. The «täte transition associated with f must still be 

{al,a2} -» {bl,a2} to prevent it from being applied at p3. 

Actually, in an implementation a state transition doesn't need to remove and then 

add an element only to prevent being used at a state whe-£ it shouldn't be. A check 

of the state to make sure that the element is present is all that is needed. However, 

removing the element is acceptable and is consistent with the model of synchronization 

as presented, so no further extension will be given for this special case. 

SUBSTATES 

If a state transition may occur more than once consecutively from a state, then 

each element which it removes and doesn't return must have more than one instance in 

the original state. 

Example 4.3:  Consider the regular expression ffgg)*.  This may be represented 
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with states pi - {el,el.e2}, p2 - {62,62,82}, and p3 - {Bl,e2t*£) with the 
state transitions tf:{6l,el}-» {e2,e2) and tg:{e2,e2}-+{el,e2) 
corresponding to f and g respectively. 

Since t    removes e2 and adds el, e2 must occur at least twice in p2 and el must 

occur at least twice in pi. 

Definition.  The multiplicif/ of an element "e in the state p of a shared resource 
is the number of instances of e in p. 

In exampla 4.3, e2 has a multiplicity of three in state p2, two in state p3, and one in 

state pi. Since t_ removes e2 twice, e2 must have a multiplicity of at least two in the 

current state in order that tg may be used. Since this is not the case in pi and since 

tH is the only state transition associated with g, any process which tries to execute g 

when the state is pi will block. 

It is now necessary to return to the situation where the elements which a state 

transition must remove from a state p form a subset of some state p' at which the 

associated operation can't be applied. Such is the case in example 4,3 where tg .ust 

remove {e2} from p2 and from p3 but e2 is also in pi, a state at which g can't be 

applied. In this example, however, pi also contains the only other element, el. 

Therefore, t can't remove an element which is contained in p2 and p3 but not in pi. 

Onty the multiplicities are different Thus, to prevent g from executing at pi, sort^ 

element must be removed in a greater amount than its multiplicity in pi. Here that is 

possible since e2 has a greater multiplicity in p2 and p3 than it does in pi. 

It was stated above that e2 must have a multiplicity of at least two in p2.   In 

fact, it has a multiplicity of three.  Also, tg removes e2 twice rather than once and then 

'•1 

.. 
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adds the second one bacK. This is only partly because e2 has • non-zero multiplicity 

in pi. The reason why e2 has a muitrplicity in each state of one greater than it needs 

to be is that it is used to perform the same function that • does in example 4.1. Here, 

two processes could execute g simultaneously from state p2 otherwise. In general, if a 

state transition can be used n times in sequence from a state o, then It can be 

prevented from being used twice simultaneously by removing some element n times 

and adding it n-1 times. The multiplicity of this element should bo 2n-l in p. Thus, 

after n applications of the state t ansition, the multiplicity of this element In the 

current state is n-1 and it can't be applied again. 

It might be true that there are states p and q such that not only is every 

element in p also in q but the multiplicity of each of these elements is at least as great 

in q as it is in p. 

Dofimtion: If p and q are states, then p is a »uAafo«? of q, denoted p c q, if (Ve, 
e an element) the multiplicity of e in p isn't greater than the multiplicity of 
e in q and (36', e' an elemenM the multiplicity of e' in p is less than the 
multiplicity of e1 in q. 

If p is a substate of q then it is clear that any state transition, and therefore any 

operation, which can be used at p can also be used at q. Furthermore, the state 

resulting from using such a transition at p must be a substate of the state resulting 

from using it at q. This is true since the elements not removed from p are a subset of 

those not removed from q. 

It is possible to extend the concept of an ere progression to state transitions. 

For every arc progression (pQ,fi)...(pn>i,fn) there is a corresponding string of state 

transitions tj.,,tn.   Each tj is the state transition caused by executing fj from state Pj.j. 

. . 
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Composing those st... transitions tK.n yic.ds . state transition which corresponds .0 

executing the entire arc progression. 

A composed state ,rans,t,on , corf.spondin6 ,0 .,,..„ W de create, in the fo,,owin6 

„anner. ,. an e,ement ,s added by ., and reeved by tj where i<i, then this addition 

and „^ cence, each other.   A.ter .11 possib,. c.nc. ons are m.de, . -ovee 

the tfs add. 

„ ,he set of elements which a slate transition removes is a subset of those that 

„ .dds, then any state that contains the elements lor w.ich the transition waits is a 

Such  a  state   transition  can  there.ore be used an  arbitrary  number  0.  limes In 

succession.   Ex,.ndin8 .his observation ,0 composed stale transitions produces .he 

following results. 

,,■,,-,„ «A:   I. a shared resource R has . ™'™*'**'fflZtm 
nu„bnr of stains is finite iff there are no s.a.es P and q 
p c q ?nd .here if a composed state trans.hon t:p - 0- 

Proof: If there are 2 such states, then an infinite number of slates may 

b0 generated by repealed use of .. On the other hand, if the number of 

states is infinite, then the multiplicity of some element e must be 

unbounded. Hence, there mus. be states plr..,Pi,.. such that (Vi, U D • 

has a greater multiplicity in Pitl than in p, and there is a composed s.a.. 

... .. ....   .      . ... 



ELEMENTS 65 

transition tjtpj •♦ p^j. If Pi c pj for some i, then the theorem is proved. 

Otherwise, each pj has at least one element with lower multiplicity than in 

pi. Since there are finitely many elements and infinitely many Pj's, for 

some element el there are infinitely many of the p^'s which have ■ lower 

multiplicity of el than does pj. If the multiplicity of el in pj is K, then 

these may be divided into k classes representing each velue of the 

multiplicity of el less than K. One of the clsisse« mutt have an Infinite 

number of members pp.-.P}',... such that the multiplicity of el is the same 

for each p^ and (Vi, i fc. 1) e has a greater multiplicity in pj+1' than in Pj' 

and there is a composed state transition t^pj' -»p^'. The above 

procedure may then be repeated. It must terminite since there are only « 

finite number of elements. 

CoroHory 4.5: If there are a finite nur^r of states and if p and q are states 
such that p c q and there is an arc progression from q to p, then q Isn't In 
any persistent set. 

Proof:  There can be no arc progression from p to q. 

IMPLEMENTATION 

For most serial resources, the implementation based on elements will be more 

complex than that based on states. However, it will be seen that this isn't true for a 

special class of these resources. Before this class is presented, though, a general 

implementation will be introduced. 

In the previous implementation, the state was represented either by a single 

....■■■■.     ::v.; 
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variable or by a set of boolean semaphores With element!, the state must be 

represented by a set of variables. Each of these variables is used to Keep track of 

the current multiplicity of one of the elements. Likewise, for each state transition 

associated with an operation, the amount of each element that it removes and adds 

must be stored. There are two ways to do this, The first is to keep the amounts for 

each of the elements, including a zpro for those that it doesn't remove or doesn't add. 

The other way is to save only the nonzero amounts and to label each with the element 

to which it corresponds. Since these labels require space, the second method will use 

more storage unless most of the state transitions are sparse in that they remove only 

a small percentage of the elements. 

When a process attempts to execute an operaUon, each of the various state 

transitions associated with the operation must be compared with the state. This is 

basically the same procedure that was used in the implementation described in 

chapter II. The number of state transitions involved may be fewer than the number of 

states, but each comparison now requires checking the multiplicity of each of the 

elements which must be removed. Thus, several variables must be compared rather 

than just one. The number of comparisons which will be made in the worst case, when 

the process becomes blocked, will be the sum of the number of elements which must 

be removed by each of the state transitions associated with the operetion. In addition, 

if the first method above is used to store the state transitions, for each state 

transition tried, every element's value must first be compared with zero. When a 

match is found, the identity of the appropriate state transition must be saved so that 

the proper one will finish when the operation completes its execution. 
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If none of the state transitions can proceed, then the process must be put on a 

waiting list. The waiting lists should bo organized as before. Either each set of states 

at which an operation may be applied has a waiiing list or else there is a single list, 

When an operation completes execution, the state transition resumes by adding 

elements to the current state. Instead of being unique, the resulting state will be one 

of several depending on which elements the state variable »Iready contained. If there 

is a single waiting list, each process is checKed in turn by comparing the current state 

with the elements removed by each of the state transitions associated with the 

operation the process is attempting to execute. If there are several waiting lists, then 

they are ordered according to the length of time that the top element has been waiting 

or some other priority scheme. Using this ordering, the top procets on each list is 

checked as in the one list case. When a process is found which cen continue, the 

multiplicities of the appropriate elements are decremented in the current state. 

The several waiting list implementation may now seem to be the same es the one 

using 6 single list. The difference is that with the several list scheme, if the top 

process of a list fails, none of the other processes on that list will be tested to see if 

it can continue. Thus, if execution of an operation f is enabled, with a single list 

several processes attempting to execute another operation g might be higher on the 

list than the first process attempting to execute an f. Each of these processes will be 

tested while with several waiting lists only one such process would be tested. In 

addition, a further simplification can be made when several waiting lists are used. 

Usually, only a fsw of the states are possible results from completing a state 

transition.   Some of the operations won't be able to begin execution at any of these 

    ._.....      .. _   
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states.   Therefore, the waiting lists ot processes trying to execute these Operations 

need never be checked. 

Returning to example 2,11, let p = {61,61,62}, q - {6l,e2,e2), and q' - {el,el,el} 

and let tf:{el,el}-♦ {el,e2) be associated with f, {el,el,e2)-> {el,el,el} and 

{el,el,el}-» {el,6l,el} bf associated with g, and {el,e2,e2)-> {el,el,e2) and 

{el,el,e2} -» {el,ei,62} be associated with h. 

As explained before, since f may go !wlc» In a row from q' and it removes el, to 

prevent two processes from executing f in parallel el should be removed twice and 

added once. It must also have a multiplicity of three in q. When a process tries to 

execute f, it must wait until the variable for el has a value of at least two. A process 

trying to execute g must wait until the variable associated with el has a value of three 

or else until el has a value of two and e2 has a value of one. There will be two 

waiting lists as before. One is for processes trying to execute either an f or a g and 

the other for those trying to execute an h. When t^ completes, the resulting state will 

either be p or q. Processes trying to execute either an f or a g will only be allowed 

to proceed if the state is p. Thus, before the list for processes waiting to either 

execute an f or execute a g can be searched, the identity of the current state must be 

determined, An h can be applied at either of these states, so the list for processes 

trying to execute it must be checked.  When an h finishes executing, the state must be 
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p and both lists will be examined for waiting processes.   Likewise, when a g finises 

executing, the state must be q1 and only the list for f and g will be checked. 

ASSIGNir/G ELEMENTS TO STATES 

The synchronization as studied so far is expressed in terms of states or else 

using a notation, such as regular expressions, which can be converted into states. In 

order for elements and an implementation based on the.Ti to be useful, it must be 

possible to convert from states into multisets of elements. 

For a resource with states pit...,pni one way to assign multisets of elements to 

these states is to create n pairs of elements. For each pair »; and b; where l<i<n, 

include a, in state Pj and bj in each state p: for Mj, Thus, each state contains n 

elements rach with a multiplicity of one. A state transition from state Pj to state p: 

can be written as {aj,b,] -» {bj,aj}. The elements bk for Mi and k^j a-e in both P| and 

p: and therefore don'l have to be included in the transition. This transition may only 

be used at pj since that is the only state contaimng aj. In example 4.1, pi - 

{al,b2,b3,ba}, p2 - {bl,B2,b3,b4}, p3 - {bl,b2,a3,b4}, and p4 - {bl,b2,b3,a4}. The 

state transitions {al,b2)-♦ {bl,a2} and {a3,b4}-■ [h3,a4) are associated with f, 

{al,b3) -» {bl,a3} and {a2,b4} •♦ {b2,a4} are associated with g, and {bl,a4} -♦ {al,b4) Is 

associated with h. 

This assignment of elements to states leads to the worst case in that the 

maximum number of state transitions will be needed, In order to reduce the number of 

state transitions afsociated with an operation, some of the elements in the states at 
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which the operation can be appl.ed and in the resulting states mu.t be replaced by 

other elements.  To do this, two such transitions are stt equal.  Thus, if {e}+U - {e'h'f 

and V - V are both associated with an operation, they are set equal and the equation 

is solved.   This is done by le.ting e - V+IT and e' - V'+U.  This substitution is made in 

every state transition and also in each state.   The first state transition then becomes 

V+U'HJ-WUHT    which    reduces    to    the    second.     In    example    4.1,    setting 

{al,b2} - {bl.a2} - {a3.b4} -» (b3.a4} yields al - {a2.a3,b4} and bl - {b2.b3.aa}.   The 

states     are     now     pi-     {a2.b2.a3.b3.b4.b4],     P2 -     (a2.b2.b3.b3.a4.b4}.     p3 - 

{b2.b2.a3.b3.a4.b4), and p4 - {b2.b2.b3.b3.a4.a4}.   Operation f is now only assorted 

with the state transition {a3.b4} * {b3,a4}. g is associated with {a2,b4} ■* {b2.a4} and 

{a2,a3.b3.b4} . {b2.a3.b3.a4] which reduces to {a2.b4] * (b2.a4)1 and h is associated 

with {b2.b3,a4.a4} -» {82,a3,b4,b4). 

Several things must be noted about the above algorithm.  First, the multiplicity 

of some of the elements may be greater than one in some of the states.   In the 

example. b2 has a multiplicity of two in p3 and in P4.   It is therefore possible that 

some elements might be removed or added more than once by a state transition.   In 

the transition associated with h. a4 is removed twice and b4 is added twice.   If such a 

transition is set equal to another and an element a, which is removed or added n times 

by the state transition is solved for. the result will be of the form n^ - U and n^ - 

U' where U and U' are multisets of elements.   But ^ or b, might have a multiplicity 

whicn isn't a multiple of n in some state.   Simple substitution would therefore result in 

fractions of elements.  This problem can be corrected by multiplying the multiplicity of 

every  element  in  every  state  by  n.   The  solution  to the equality  of  the  state 

transitions will then be r^a, - n*U and Ab, - n.lT which reduces to nta, - U .no 
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n*b| - U'. Now, however, the multiplicities of •, and bj in every state must be multiptes 

of n. 

Next, some of the elements may have a multiplicity of at least one in every state. 
* 

This is true of b2 and b3 above. Subtracting the minimum such multiplicity from every 

state won't change any of the state transitions. The result is that the states can be 

simplified. In example 4.1, the states become pi - {aZ.aS.b^bA}, p2 - {»2,b3,a4,b4), 

p3 - {b2,a3,a4(b4), and p4 - {b2,b3,a4,a4). Third, both elements of a pair may now be 

in a state.   Thus, a4 and b4 are both in p2 and in p3. 

r.i.aily, a state transition U -♦ V for some multisets of elements U and V can 

always be written as k*{a(}+Lr-> ktlb^+V where \J and V are also multisets and 

which contain neither a| nor bj. This can be shown by assuming thai the sum of the 

multiplicitieti of the two elements in any pair is the same in every stete. This is 

certainly true for the initial assignment where this sum has the value one for each 

pair. Thus, if a, is removed K times from a state then bj must be added h times. 

Assume that e has multiplicity m and bj has multiplicity n in state p and e has 

multiplicity m' and bj has multiplicity n' in state q. If the sums are the same in every 

state then m+n - m'+n'. If m>m', then in the state transition from p to q, Bj must be 

removed m-m' times and bj must be added n'-n - m-m' times. If solving for BQ «nd bQ 

produces a0 - U" and b0 - V" and B| ( U", then the multiplicity of a, in LT must equal 

the multiplicity of bj in V". When BQ and bg an» substituted for in each st?ite, since the 

sum of their multiplicities are the same, the sum ot the multiplicity of Bj and bj must be 

the same in eve'-y state. 

It isn't always possible lu set two state transiiions equal.   If it wes, then the 
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same transition could be used for every operation of a resource just by setting all of 

the state transitions equal to each other. There are three situations for which state 

transitions can't be set equal. The first occurs when state transitions U -► LT and 

V -» V are set equal and an element a, is solved for which is in both U and V with 

multiplicities m and n respectively. It must also be true that b, is in both LT and V. 

The result must be that m«aj • n*{bf}+U" and m*b| - n*{aj}+V" for some multisets LT 

and V". Since these solutions are mutunlly recursive, no such element must ever be 

solved for. If every 3lement of U is also in V and every element of V is in U, then no 

element can be solved for and the two state transitions can't be set equal. 

Another situafion occurs when substituting multisets of elements V and V for 

elements aj and b; respectively causes two different stf J.es to become equal. Such a 

substitution can't be allowed. A check for this situation can be made as follows. If the 

multiplicity of a, in a state p minus the multiplicity of aj in a state q is some number n, 

then p and q will become equal if p-n*{aj}+nW - q-n»{b|}+n*V'. !f n-0 (aj has the 

same multiplicity in p and q) then this check is unnecessary. If there are no elements 

ef and bj from two state transitions which when substituted for don't collapse some 

states into one, then these transitions can't be set equal. 

A final situation occurs when making a substitution causes the intersection of the 

states at which some operation can be gpplied to become contained in another state. 

If such a substitution were allowed, then there would be no element that a state 

transition could remove and that was in every state ?t which the operation could be 

applied but not in the other state. Therefore, the operation couldn't be associated 

with just one state transition,  A check must be made that this condition doesn't hold 
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after the substitution for any operation which c«n be applied at more than one stete. 

If for two state t ansitions every element which can be solved for causes this 

condition, then the transitions can't be s»t equal 

After all possible substitutions have been ■nade, it may be possible to »educe the 

number of elements in each state. If the multiplicity of »ome element e' Is at least as 

great as the multiplicity of an element »• in every state, then create • new element 

e" - h.e'}. A substitution is made t/ subtracting the multiplicity of e from that of e' in 

every state, letting e' have the sa.ne multiplicity as e, and deleting e. A substitution 

must be made in the state transitions also. If e is removed (added) then e" must be 

removed (added) instead and e' must be added (removed). If e' is now both added and 

removed, these can cancel as before. This procedure can never cause two states to 

collapse into one, but it might cause the intersection of the states at which a trtnsition 

can be used to become contained in another. Therefore, a check for this situation must 

be made before a substitution can be allowed. 

Returning to example 4.1, every state containing »3 also contains b4. Therefore, 

let al' - {a3,ba). The states become pi - {al',a2,b4), ^2 - {a2,b3,B4fb4}, and p3 - 

{al,,b2,a4}, the state transition associated with f becomes {al'} -» {b3,a4}, and the 

state transition associated with h becomes {b2,b3.a4,a4}-» {8l'.a2,b4}. The Mete 

transition associated with g remains {a2,b4} ■* {b2,a4} and p4 still equals {b2,b3,a4,a4}. 

Now every state containing b2 also contains a4 so letting b2' - {b2,a4} produces p3 - 

{al',b2'}) p4 - ^^W}, the state transition {a2,b4} -* {b2'} to be associated with g, 

and the state transition {b3,a4,b2'} -» {al',a2(b4) to be associated with h. It is now 

possible to let {a2,b4) - a2' and {b3,a4} - bV.  The result is that pi « {al'.an p2 - 
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{bl'.aa*}, p3 - {ar,b2'}, and p4 - {bl'.ba'}. The state transition associated with f is 

{al'} -» {bl'}, {82'} -♦ {b2,} is associated with g, and {br(b2'} -♦ {al'^') is associated 

with h. 

After the synchronization relationships have been reduced as much as possible, 

a check must be made to be sure that the set of elements that each state transition 

removes isn't contained in some state at which the transition shouldn*t be used. If it 

is, an element from the intersection of the states at which the state transition can be 

used but which isn't already removed should bw both removed and added by the state 

transition. This process should continue unlil the elements which it removes are no 

longer contained in any states at which the transition shouldn't be used. When 

including these elements n the state transition, for reasons that will become clear 

later, any which have a multiplicity lound by one should be included first. Also, if any 

two state transitions remove disjoint subsets of a state but their associated operations 

should execute serially, a new element should be added to every state and these two 

transitions must both remove and then add this element. Thus, in example 4,1, a new 

element e must be added to every state which the state transitions associated with f 

and g oach removes. 

SINGLE TRANSITION OPERATIONS 

As can be seen from examples 4.1 and 4.3, often one state transition can be 

used to represent the statt- change caused by applying an operation at any one of 

several states. Thus, in example '«.I the state transition {e,al} -» {e,bl} can be used to 

change pi into p2 and p3 into p4. Likewise, in example 4.3, {e2,e2} ■♦ {el,e2} can be 

used to change p2 into p3 and p3 into pi. 

■ 
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Definition; An operation is single tranütion if one slate ransition can be used 
to represent exactly those state changes which the operation can cause. 
A resource is singla iratmition if every operation defined on it is single 
transition. 

The advantage of a single transition operation is that only one transition needs to be 

checked at the start of the operation. Also, the identity of this transition doesn't need 

to be saved during the execution of the operation. 

Trivially, every operation which Is both injective and projective is single 

transition. Thus, a simple serial resource is single transition, For other resources, 

though, it may not be possible to make every operation single transition. The 

following re?uit shows that ever^ single transition operation must be Injective. 

Theorem 4.o:   11 isn't possible for a state trartsition to take different states p 
pnd p' into the same state q. 

Proof: Assume that there are states p, p', and q such that some ttate 

transition t:V -» V takes p a-d p' into q. Since t can be used at p ano p', 

there must be multisets J and LT such that p « LkV and p' - LT+V. Using t 

at p results in q - U+V and using it at p' results in q - LT+V. Therefore, 

U - LT and p - U+V ■ p' and p and p' aren't different states. 

If state transitions U -♦ LT from a state p to a state q and V -> V from p'' to q are set 

equal using the algorithm above, the result wifl be that p and p' become equal. This 

may be seen by solving for some element e with multiplicity n in U. The result is that 

n*e - Lr-n*{e')+V and n*e' - U-n»{e}+V' which becomes n*e - U+V,-n»{e'}. Subtracting 

the two solutions for e yields U-LT - V-V. But p - q-U+U - q-V'+V - p'. This result 

can also be extended to composed state transitions. Thus, if S(p,f) - p', S(p',g) - pM, 

S(q,g) - q', and S(q,,f) - p", then either f or g isn't single transition. 
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The next result shows that if a group of single transition operations execute 

from a «tct-, tf-.«i resulting state will always be the same regardless of the ordering. 

This is a commutative law for single transition operations 

Thooram 4.7:   If a state transition t takes state p into p' and state q into q' and 
e state transition V faKes p into q and p' into p", then q' ■ p". 

Proof: Assume that t - U -»IT and T- V -» V. Then p' - p-U+U' and p" - 

p'-V+V - p-U+U'-V+V. Also, a - p-V+V and q' - q-LkLP - p-V+V'-U+LT - 

P". 

Thus, for the synchronization expressed by (f g h+g f i>* either f or g can't be single 

trensition since f g and g f exec 'ing from the initial state result in different states. 

The third result shows that if an operation is single transition and it can be 

applied n times in a row starting at a state p with the result being state p for some 

n>l, then the result of applying it at any state q (including p) must be q. 

Thaorfitn 4.8:   If a state transition U -♦ V can be used n times in a row starting at 
a state p with the result being p for some nil, then U - V. 

Projf;   After using the state transition n times from p, the state will be 

p-n»U+n»V - p.  Therefore, n*U ■ n«V. 

Thus, if the synchronization for a serial resource is given by the regular expression 

(f+<g g))* then operation g can't be single transition. If for some m, an operation can 

be applied m times at a state p with the result being state q using a state transition 

U -♦ LT and it, can be applied at q with the result being p using a state transition 

V -» V, then V - m*U and therefore U and V contain the same elements and It won't 
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be possible to set them equal. Thr theorem can also be extended to strings of 

operations. Combining it with the commutative law shows that if executing an f from a 

state o followed by executing a g results in state p and if executing a g from some 

state q followed by executing an f results in a state q', then either f or g isn't single 

transition. 

The final result shows that if a single transition operation f can execute several 

times in a row from a state p with the result being state q and another single 

transition operation can be applied at both p and q then it can also be applied at any 

of the intermediate states in the string of f's. 

Theorem 4.9: If there are states PQ.-.Pn and a state transition t:U -+ V such that 
(Vi, lsi<n) t takes pj.j into Pj and there is a state transition t' which 
removes the multiset of elements LT and can be used at PQ and pn, then 
(Vi, Osi<n) t' can be used at pj, 

• 

Proof: It must be true that (Vi, 0<i<n) Pj - p- iU+iV. Since t1 can be used 

at PQ and pn, for every element e the multiplicity of e in LT can't be 

greater than the multiplicity of e in either p or in pn - p-nU+nV. Let me 

be the difference between the multiplicity of e in V and the multiplicity of 

e in U. Thus, the multiplicity of e in Pj must be the multiplicity of e m p 

plus i*me. If me > 0, then the multiplicity of e in pj must be at least as 

great as the multiplicity of e in p which is at least as great as the 

multiplicity of p in LT. If me < 0 then i«me t n»me and therefore the 

multiplicity of e in pj is at least as great as the multiplicity of e in pn 

which is at least as great as the multiplicity of e in LL Therefore, t' can 

be used at p,. 
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This theorem shows t,iat for the synchronization expressed by the regular expression 

(g+ffg*h)* either f or g can't be single transition. If the above algorithm was applied, 

the intersection of the states at which g can be applied would be contained in each of 

the states bp*ween the ♦wo f's. 

Tw" restrictions to a single transition resource are allowing a transition to 

remove at most one occurrence of each element and allowing a transition to remove 

only one element but by any amount. These restrictions are equivalent to the 

resources which can be implemented using P-V multiple and P-V chunk respectively 

and placing bounds on the semaphores. Since any synchronization which can be 

expressed using P and V can also be expressed using P-V multiple, the resources 

which can be synchronized with P and V and bognded semaphores form « subclass of 

the single transition resources. 

BOOLEAN ELEMENT RESOURCES 

Single transition operations need only attempt one state transition in order to 

execute and therefore the same set of elements is always added to the state upon 

completion. However, several variables must still be checked when a process tries to 

«>.9',ute such an operation and also whenever an attempt is made to remove it from a 

waiting list. For a subclass of the single transition operations, though, the 

implementation can be changed so that only one variable must be checked to determine 

:f the operation may start execution. 

Dofinition: A state trdnsition is boohtm dtmmt if every element which it 
removes has a multiplicity of at most one in any state. A shared resource 
is bool«an olemtrnt if it is single transition and every element has a 
multiplicity bounded by one.. 
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Thus, every state transition associated with an operation of a boolean element 

resource must be boolean element. The resource m example 4.1 may easUy be seen to 

be boolean element. 

If a state transition is boolean element, then it is always possible to alter the 

implementation by adding new elements such that the multiplicity of only one element 

needs to be checked. Assume that the state transition removes n elements. Create a 

new element e such that at any time its multiplicity is the sum of the multiplicities of 

these n elements. Thus, whenever e of these elements is added to the state, the 

multiplicity of e is increased by one and whenever one is removed, the multiplicity of e 

is decreased. Since the multiplicity of each of thes« elements is bound by one, their 

sum, and therefor the multiplicity of e, is bound by n. Also, the multiplicity of e will 

reach n exactly when all of these elements are part of the state. The state transition 

now only must wait until the multiplicity of e equals n. At such a time, the rest of the 

elements which it must remove are guaranteed to be part of the state in the 

appropriate multiplicity. A simplification can be made by deleting any element which 

no state transition waits on. 

• 
Returning to example 4.1, let el - {e,al}, e2 - {e.aZ}, and e3 - {bl,b2}. The 

state transition {e,al,el,el,e2} -♦ {e,bl,el,e2.e3} only needs to wait for the multiplicity 

of el to be two and corresponds to f, {e,a. -?e2} -* {e,b2,el,e2,e3} only needs to 

wait for the multiplicity of e2 to be two and corresponds to g, and 

{bl,b2,e3,p3} -+ {al,a2,ei,>?2} only needs to wait for the multiplicity of e3 to be two 

and corresponds to h. Since no state transition wails for e, al, a2, bl, or b2, these 

elements may be deleted,   The result if that pi - {el,el,e2,e2), p2 - {el,e2,e2,e3}, 
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p3 - {el,el,e2,e3}, and p4 - {el,e2,e3,e3). The operation f corresponds to the state 

transition {61,61,62} -> [6l,62,e3) but it doesn't need to check e2, g corresponds to 

{el,62,e2}-♦ {el,e2,63} but doesn't heed to check el, and h corresponds to 

{63,63} -♦ {6l,e2}. 

An alternate simplification can also be made to the Implementation of a boolean 

element resource.   The state can be represented with a string of bits.   Each zero bit 
■ 

means that the corresponding element is present and a one means that it isn't. To 

check for a group of elements a mask is used. Every one in the mask indicates an 

element which is needed. If the result of performing an AND operation between the 

mask md the state is zero, then the state transition has succeeded. To remove the 

appropriate elements from the state, the bit string is ORed with the mask. To add 

elements to the state, another mask with a zero for 68ch element being added and a 

one for the rest of the elements is used. This mask is ANDed to the current stcte bit 

string. 

Since the implementation of a boolean element resource involves a fairly small 

amount of overhead, it would be reasonable to restrict a programming system to such 

resources. To help make such a restriction, a notation which corresponds to this class 

of synchronization is desirable. 

Definition.   A multiple regular orprossfon is a set of regular expressions.   It is 
remricted if every member of the set is restricted. 

A multiple regular expression is interpreted such that the synchronization expressed 

by each of the member expressions must b« satisfied. 

Example  410:    The   restricted  multiple  regular  expression   {(f(gxh))*,(g h)*} 



ELEMENTS 81 

means that execution of f must alternate with the execution ot g or h and 
that execution of g and h must alternate. This is the same synchronization 
as that expressed by the regular expression (f g f h)f 

It will now be shown that the restricted multiple regular expressions correspond 

exactly to the boolean element resources. 

Thaorcm 4.11:   A resource is boolean element iff the synchronization on it can 
be expressed with a restricted multiple regular expression. 

Proof: If a resource is boolean element, then for every element e ',reate 

a new element e' and inc ude e' in every state which doesn't contain e. 

The state transitions must be changed so that if e is removed but not 

added then e' must be added and if e is added but not removed, then e' 

must be removed. A restricted regular expression will be created for 

eve^y pair of elements e and e'. Assume that ope'ations f^...,fj remove e 

and add e', operations fj+i.-.f; remove e' and add e, operations fj+i.-^K 

remove and add e, and the rest of the operations neither remove nor add 

e and e'. If e is in the initial state, then the regular expression can be 

writun as (fj+l+...+fk+((f1+...+fj){fj+1+...fj)))* and if e' is in the initial state, 

then the regular expression can be written as 

((fj + 1+...+fjMfj+i+...+fk)*(fi+.+fi))*- If a resource can be expressed as a 

restricted multiple regular expression, then it forms a set of simple serial 

resources. Assume that the states of each of these resources are disjoint 

and use them as the elements of the complete synchronization 

relationships. The initial state is composed of the elements representing 

the initial states of the various simple sertst resources.   Since each of 
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these resources can only be in one stete at a time, the multiplicity of each 

element is bound by one. Each operation removes the elements 

corresponding to the states at which it could be applied and adds the 

elements corresponding to the states which could result from its execution 

in the various simple serial resources. Since there is only one state at 

which it can be applied in each such resource, it must be single transition. 

The restricted multiple regular »xpressron {(f h)*,(g h)*,(f+g)*) can be used to express 

the synchronization of (he resource in example 4.1. The expression In example 4.10 

corresponds to states pi - {al,a2}, p2 - {bl,a2}, p3 - {al,b2}, and D4 - {bl,b2} and 

state transitions {al} -> {bl} associated wi'.n f, {bl,a2} ■♦ {al,b2) associated with g, and 

{bl,b2} -» {aljte} assoc'ated with h. 

While restricted multiple regular expressions can be used to express the 

synchronizations for the boolean element resources, trying to understand several 

expressions simultaneously is harder than understanding a single expression. In 

particular, it 's easier to include deadlock iltuetion». An example is {(f g)*,(g f)*}. No 

process will ever be allowed to execute either an f or a g. In order to help prevent 

such situations from occurring, a compiler for a language which allows synchronization 

to be expressed using multiple regular expressions would need to create the states 

and successor function. States at which no operation can be applied and the 

auxiliaries of each persistent set then can be found. If there is no state in any of the 

subexpressions at which no operation can be applied but there is one for the resulting 

synchroniz». on relationships, then a warning should be given. UKewise, If for every 

expression that some operation is in it is an »■jxiliary of every persistent set, then it 

should be in every persistent set of the result. 



  

CHAPTER V 

CONCURRENT RESOURCES 

When several processes can operate on a shared resource in parallel, usually 

each process may he considered to be operating on a different part of the resource, 

each with its own set of operations and synchronization relationships. For example, 

consider a ring of buffers which ST veral processes, may acces$ simultaneously. Each 

buffer in the ring may be thought of as a unique resource which may only be accessed 

by one process at a time with the operations insert and remove alternating. However, 

sometimes it isn't possible to consider a resource which can be operated on in parallel 

as beirig composed of several independent parts, 

Example b.l: While a disk transfer is occurring, the process which controls the 
disk can be selecting the next transfer. The new requ&st may not be 
passed to the disk, though, until both the disk has finished its transfer and 
the selection is completed. 

In actual practice, the disk transfer resource will be more complex,   A delay operation 

which is part of a clock resource will be used to insure that a selection isn't made until 

the transfer has almoii completed.   The selection operation first calls this operation     , 

before it makes the selection. 

Another example occurs when several processes are allowed to read or copy a 

file simultaneously. However, reading and copying are r~f allowed while the file is 

being written. 

Definition:   A concurrent resource is a shared resource on which it is possible 
for more than one process tq operate at a time. 

■■■ 
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The final synchronization to be studied is that of concurrent resources. 

PROLOGUES AND EPILOGUES 

So far, an operation has been viewed as a group of state transition« only one of 

which is used each time it is executed. This was icceptable since the resource state 

couldn't be changed during the execution of the operation by another process starting 

or completing execution. Therefore, the execution of an operation could be viewed as 

being instantaneous. When processes can operate on a resource in parallel, though, 

this is no longer true. In this case, the start and end of an operation must be treated 

as sepa ate state transitions. 

It is possible to handle concurrent resources within the mode» vi3veloped for 

serial resources by introducing for each operation which must be synchronized a pair 

of null operations which have no effect on the resource. One of the null operations 

will be called before execution of the operation and the other wilt be called after 

execution. The synchronization is then expressed in terms c» the null operations which 

must be used serially. 

Definition: The prologs of an operation f defined on a concurrent resource is 
a null operation which must be called by f at the start of its wwution. 
The epilog« of f is a null operation which must be called by f at the end 
of its execution.  A perüogw is either a prologue or an epilogue. 

Since the perilogues must be used serially, corollary 2.5 shows that the 

synchronizaiion for a finite state concurrent resource can be expreased as a regular 

expression of the perilogues. 
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A process must wait to execute an operation until its prologue can be applied at 

the current state of the resource. The state change associated with the prologue is 

then made without entering a null stf*«». This can be done since the prologue has no 

code and may be thought of as executing instantaneously If elements are used, this 

means that a state transition removes and adds the appropriate elements 

simultaneously without entering some intermediate statt. When the operation finishes 

execution, some state change corresponding to the epilogue must be made. Once 

again, this state change can be made instantaneously, 

While the prologue of a,1 operation may block until the resource enters a state 

at v/hich it may be applied, It shoutd always be the case that an epilogue wi;< be able 

to be applied immediately upon completion of the ccresponding operation. When the 

epilogue is attempted, the operation has already made all of its accesses to the 

resource and reliability can't be improved by a delay at this point. Tl before, the 

epilogue must be able to be applied at every slate which can result from the prologue 

in case no other operation starts or stops during execution of the operation. In 

general, if an epilogue can be applied at a state p and some other perilogue can also 

be applied at p with the result being state q, then the epilogue must be able to be 

applied at q. 

In the implementation of concurrent resources, the waiting lists must be checked 

more often than they were in the implementation of serial resources. When a process 

is allowed to execute an operation, it causes a state change to take place. Therefore, 

some of the processes which are blocked and on a waiting list may now be able to 

execute.   A check of the waiting processes must be made.   This procedure continues 
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until none can go.   Thus, the waiting lists must be checked whenever an operation 

start« and whenever it finishes,, twice as often as for a serial resource. 

Using prologues and epilogues, concurrent resources may be implemented using 

the method described in chapter II based on the successor function. However, even 

simple resources will have a complicated implementation. On the other hand, some of 

these resources will turn out to be boolean sitment and can be implemented simply 

using the method described in chapter IV. 

Example 5.2: Consider a modification to example 4,1 which allows operations f 
and g to be executed in parallel. There are now ten states with S(pi,fp) - 
p2, S(pUD) - p3, S(p2,te) - p4, S(p2,gD) - S(p3,fp) - p5, S(p3.ge) - p6, 
S(p4,gp) - S(p5,fe) - p7, S<p5,ge) - S{p6,fp) - p8, S(p7,ge) - S(p8,fe) - 
p9, S(p9,hp) - plO, and S(plO,he) - pi. 

The notation fp and fe is used to respectively indicate the prologue and 
epilogue of operation f.  Using elements, the states become: 

Pi - {al,a2} 
p3 - {al,c2} 
p6 - {al,b2) 

p2 - {cl,a2} 
p5 - {cl,c2} 
p8-{cl,b2) 
plO - {e} 

and the prologues and epilogues become: 

{a2} - (c2} f :{al}-Mcl} 
fe: {cl)-♦ {bl) gj:" {c2} - {b2} 

p4 - {61,82} 
p7 - {bl,c2} 
p9-{bl,b2} 

hp: {bl,b2) •* {e} 
h^: {e] -* {al,a2} 

  . 
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Each of the perilogues fp, fg, g_, and ge may be applied at three states and none is 

projective. Thus, when an operation is called, three states must be compared with the 

initial state. When it finishes, this comparison must be done again to determine the 

resulting state. On the other hand, the resource is boolean element and each perilogue 

is only associated with one state transition. 

This example is essentially the same as example 5.1. The operation to select the 

next disk transfer corresponds to f, the disk transfer itself corresponds to g, and the 

issuing of the transfer command corresponds to h. The initial state for this example 

must be p6 which allows a command to be selected but requires that the command be 

passed to the disk before a transfer starts. 

Another example of a synchronization problem involving a concurrent resource 

which is boolean element but is complicated when described using states and the 

successor function is the famous "Five Dining Philosophers" problem [068]. 

Example 5.3: The states of the "Five Dining Fhilosopher" problem are qO which 
corresponds to no philosopher eating, ql, q2, q3, q4( and q5 
corresponding respectively to just pi eating, just p2 eating, just p3 
eating, just p4 eating, and just p5 eating, and ql3, ql4, q24, q?5, and q35 
corresponding respectively to pi and p3 eating, pi and p4 eating, p2 end 
p4 eating, p2 and p5 eating, and p3 and p5 eating In the following 
diagram, going along an arc in the uirection of 'Ihe arrow is the prologue 
of the operation and going in the opposite direction is the epilog le e»f the 
operation. 
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q35<— 

This resource can be shown to be shown to be boolean »lement by 
assigning elements to states as follows: 

qO - {eO,e 1^2,63^4} 
q3 - {e0(el,e7,efl) 
q4 - {60,61,62,68} 
q2 - {e0,66,63,e4) 

ql - {e5,e2,e3,e4} 
ql3 - {e5,e7,e4) 
ql4 - {65,62,68} 
q24 - {e0,66,68} 

and by using the following prologues and epilogues: 

pi_: {eO,eU -» fsB) p2p: fel,62} -» {e6} 
p4p: {63,64} -* {e8) p5p: ie0,64) -» {69} 

Each epilogue fe is the reverse of the prologue L. 

q5 - {el,e2,e3,e9} 
q35 - {el,e7,e9} 
q25 - {66,63,69} 

p3D: {e2,e3} -► {e7} 

Once  again,  none of  the  periloguer is  projective, but  a simple implementation is 

possible based on the elements. 

For shared resources, a process might call any of the operations at any time. 

Thus, the resource can be in any of its states when an attempt is made to use an 

operation if ttie resource is serial or to use a prologue if the resource is concurrent. 

However, there are some states at which epilogues won't be attempted. These states 

correspond to the times when no process is executing the operation associated with 

them. Since there will never be an attempt to use them, no harm can be caused by 

defining a resulting state if they were used.   Because of this fact, changes can be 
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made to the algorithm in chapter II which finds equivalent states and to the algorithm 

in chapter IV which converts states into multisets ol »lemnts. 

When finding equivalent states, initially the states were divided into sets of 

similar states. When perilogues are used, this division should only be based on the 

prologues which may be applied. This is the same as allowing each epilogue to be 

applied at every state. When determining if two states within a set are related, any 

epilogue which is undefined at one of these itates may be disregarded, Of course, this 

means that the relationship is no longer transitive. For examole, if states pi, p?, and 

p3 are in set SI and the epilogue |or operation f is undefined at pi, takes p2 into set 

S2, and takes p3 into set S3, then pi may be related to both p2 and p3 but p2 and p3 

aren't related. When SI is divided, pi will be put in both of the new sets S4 and S5 

containing p2 and p3 respectively. Now if some perilogue g takes a state p4 into pi, 

then p4 can be related to states which g takes into either S^ or S5. When this 

procedure is completed, a perilogue takes a set of states into each set into which it 

takes all of its member states. If it is an epilogue which is undefined for each state in 

the set, then it is undefined for the set. If ther> is a set of states T such that 

whenever a perilogue can result in T it also results in some other set, tfvn T can be 

deleted. If a perilogue still takes a set into mor«» than one resulting set, one of these 

resulting states is chosen. 

When converting states into elements, it isnt important that the intersection of 

the states at which the epilogue of an operation may be applied not be contained in 

any other state. There is no problem if an epilogue can be applied at any of the other 

states. Thus, this check is only necessary for the prologues. A check still must be 

made to make sure that two states don't become equal. 
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REQUIRE AND RELEASE TRANSITIONS 

While it was required that the epilogue must be able to be applied immediately 

upon completion of execution of an operation, it may be associated with more than one 

state transmon. Thus, several may have to be tried before one is found that can be 

used. I.' the state trans,tion used for the epilogue is unique given the one used for the 

prologue, then no search is necessary. In that case, all of the elements removed by 

this state transition must be included in every state in which the resource can be 

during the execution of the operation. 

with  it  which  il USKI •!  Ih« •"<! »I "KMon ol ttn "'r,",0',a'"» 
o^rln i. uni,U.ly det n.d by th. .ft. t on which w« uS.d 

at the start of execution. 

The epilogues for ea.h operation in examples 5.2 and 5.3 may be seen to have only 

one final transition and therefore they trivially must be unique terminator. 

For a state transition U ^ V. as explained in chapter IV there are two reasons 

why an element might be in both U and V.   The first is that it prevents several state 

transitions from being used in paralial.   With concurrent resources, however, each 

state transition may be considered to be instantaneous and nothing else can happen 

while one is being .sed,  The second reason i, that this element I. removed to prevent 

the state transition from being used at some state where it shouldn't be.   If the state 

transition is associated with a unique terminator epilogue, though, it should be able to 

be used at any state at which it'is attempted.   Thus, if a state transition U-V is 

associated with a unique terminator epilogue, then U and V will be considered to be 

disjoint. 

II IMtewit^KMiiniii^lii^älCjäraiBiiiMia 
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If an operation f has a unique terminalOr epilogue f, and there is some element 

e such that only state transitions associated with fe remove e, then e isn't needed. 

This can easily be seen since the presence or absence of e has no effect on whether a 

state transition assoc.ated with any other perilogue can be used at a state and it can 

only allow the state transitions associated with fe to be used at more states than 

before. In example 5.2. cl, c2: and e can be deleted. In example 5.3, elements e5( »6, 

e7, e8, and e9 can be deleted. 

It may now be observed that a state transition might not remove any elements 

or it might not add any elements. 

Definition: A require tramition is a state transition in which a set of elements is 
replaced by the empty set. A rdensa tramitwn is a state transition in 
which the empty set of elements is replaced by a set of elements. 

A release transition may .be used at every state. If one is associated with a prologue, 

then by theorem 4.4 there must be an infinite number of states. In examples 5.2 and 

5.3. after each element is deleted which can be, every state transition associated with 

a prologue is a require transition and every one associated with an epilogue is a 

release transition. 

A simplification to the implementation can be made when a require transition is 

used. If it is associated with a prologue and it was successfully used when the 

oper ation was called or else it is associated with an epilogue, then none of the waiting 

processes could execute before this transition so certainly none car. txswuw after it 

and they don't need to be checked. If it is associated with the prologue of some 

operation called by a process which was blocked by the call, then any waiting lists 
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which  have  been checked  during the current search  and failed  will still  fail  and 

therefore don't need to be checked again. 

The following results help determine if it is possible for a state transition to be 

either a require or a release transition. 

Theoram 5.4: If t:V -> {} is a require transition which can be used at a state p, 
then any state transition t' which can be used at the resulting state p-V 
can also be used at p and t' commutes with t. 

Proof: Let U - p-V. Let the state which results from using V at U be q. 

Thus, using r at p - UW results in state q+V. Using t at this state must 

result in q. 

Thus, if a require transition is associated with a prologue then every perilogue which 

can be used immediately after it is, except possibly the epilogue for that operation, 

must also be able to be used before it. Furthermore, they must commute. A similar 

result can also be shown for release transitions. 

Thaorom 5.5:   If t:{} -♦ V is a release transition which is used at a state p and t' 
can also be used at p wtth the result being state q, then t and t' commute. 

Proof: The result of using t at p must be p+V, but since t1 can be used at 

p, wh-h is a substate of the new state, it can also be used there with the 

result being q+V.  Using t at q also produces q+V. 

Thus, if a release transition is associated with an epilogue, {hen every perilogue which 

can be used at some state where it can must commute with it. 

II 
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MULTIPLE REGULAR EXPRESSIONS 

If an operation is such that each state transition assodated with its prologue is 

a require transition and each state transition associated with its epilogue is unique 

terminator and a release transition, then a set of elements is removed from the state 

of the resource at the start of execution and another set of elements is added at the 

completion. In this manner, each require transition associated with the prologue and 

the release transition of the epilogue which it uniquely determines may be united to 

form a state transition which may be associated with the operation itself liK© the state 

transitions whivh were used for serial resources. 

Definition: An operation defined on a concurrent resource is united transitional 
if every state transition associated with its prologue is a require 
transition, the epilogue is unique terminator, and each state transition 
associated with the epilogue is a release transition. A concurrent 
resource is united transitional if every operation defined on it is. 

United transitional resources have the advantage that the synchronization can be 

expressed in terms of the operations without concerning the programmer with 

prologues and epilogues.  The concurrent resources of examples 5.2 and 5.3 are united 

transitional. 

If a resource is united transitional, then the classifications described in 

chapter IV may be used. For instance, the resources of examples 5.2 and 5.3 are 

single transition since they are united transitional and the prologue of each operation 

is only associated with one stats transition. In addition, every element in each of 

these resources has a multiplicity bounded by one. Thus, they «re both boolean 

element.   By theorem 411, the synchronization for the resources in these examples 
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may therefore be expressed using restricted multiple regular expressions. The 

expression for example 5.2 is {(f h)*,{g h)*} and the expression for example 5.3 is 

{(p 1 +p2)*,{p2*p3)*,(p3+p4)Vp4+p5)*,(p 1 *p5)*). 

It may be seen by the above discussion that multiple regular expressions may 

be used to express the synchronization for some concurrent resources. It would be 

useful  to know for exactly what class of synchronization they can be used.   First, 

though, it is necessary t® define what is meant by two perilogues being parallel at a 
> 

state. 

Definition:  Two perilogues »re ptualM «t a state p if they both may be applied 
there and they commute. 

It is also necessary to introduce what is meant by two perilogues being sequential. 

Dofinition:   Perilogues f and g are »oq-iwHliol if any of the following are true. 

1. There is a state where both f and g may be applied but at which they 
aren't parallel. 

2. There are states p and q such that f takes p into q and g can be 
applied at q but not at p. 

3. There is no state at which f and g are parallel. 

It should be noted that a state was part of the definition of parallel perilogues but 

none was part of the definition of sequential perilogues. If there are states p and q at 

which perilogues f and g may both be applied, then it is possible that f and g commute 

at p but don't at q.  Thus, they are parallel at p but are also sequential. 

A natural restriction is to require that if two perilogues are parallel at some 

state then they aren't sequential. Parallelism may then be thought of as « symmetric 

relation. 
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Definition.    A   concurrent   resource  Is  rdationally  paralM   if   each   of  the 
following hold. 

1. The prologue of each operation is parallel at each state p where ■■ 
may be applied with every other perilogue which may be applied at 
the resulting state p' except for its epilogue. 

2. The epilogue of each operation is parallel at each state p where it 
may be applied with every other perilogue which may be applied at 

P 

3. Sequential perilogues aren't parallel at any state. 

4. The prologue and the epilogue of an operation can't both be applied 
at any state. 

Conditions 1 and 2 basically insure that a relationally parallel resource must be united 

transitional. A proof that this is really true will re shown below. Condition 3 Is 

explained above. Condition 4 requires that no twv processes may simultaneously 

execute an operation.  This may be seen from the following lemm^. 

Lemma 5.6:   If a resource is relationally parallel then for each operation f the 
use of its prologue and its epilogue must alternate. 

Proof: The prologue must be used before the epilogue. If the prologue 

fp may be used at state p with the result being state q and 

(q^l)...(qn_i,gn) is an arc progression such that (Vi, Ui<n) gj i< fel then 

(Vi, l<i<n) fe can be applied at q, and therefore fp cant be. Also, fp can't 

be applied at q.  Tbus, (Vi, l<i<n> g, t fp. 

It is now possible to show that there are some finite cKe concurrent resources 

for which the synchronization can't be expressed using a multiple regular exp-ess :>n 

Theorem 5.7: Every concurrent resource for which the synchronization can be 
expressed using a multiple regular expression is both united transitional 
and relationally parallel. 

i 

i 
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Proof:   A multiple regular expression may be implemented by converting 

each of the  member expressions into a finite automaton, each with a 

disjoint set of states.   The resource state will be represented by one 

state from each of these automata.   When an operation starts e«ecuting, 

each of the automata corresponding to expressions In which it occurs must 

be in a state at which the operation may be applied,   Tue states of these 

automata are set to the null state until the operation finishes and then are 

each set to new states based on the starting states.  Thus, it mey be seen 

that  every  state  transition  associated with the  prologue is  a require 

transition, each associated *ith the epilogue is a release transition, and 

the epilogue is unique terminator.  Thus, the resource is united transitional 

and by  theorems 5,4 and 5,5 conditions  1  and 2 of the definition of 

relational parallel hold.   If perilogues for two operations are parallel at 

some state, then both operations may be able to execute concurrently and 

they can't both be included in the same expression.   If the prologues for 

both operations may both be applied «t the same state and they aren't 

parallel, then by theorem 5.4 neither prologue may immediately follow the 

other.   Thus, they must compete for the state of one of the automata 

which can't be true since they aren't in the same expressions.  Condition 

4 holds since the epilogue of an operation can only be applied when each 

of the appropriate automata are in the null state and the prologue can't 

be applied then. 
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PROCEDURES 

It is sometimes necessary that several operations defined on a resource perform 

the same suboperaiion. For example, if there are operations defined on a stack to pop 

the top element off and another to return the top element but to leave it on the stacK, 

both operations must first test to see that the stack isn't empty. It is standard 

programming practice to use a procedure for this purpose. 

For a serial resource, no two operations may execute simultaneously so there 

can be at most one call on !he procedure in progress at any given time. Any other 

synchronization of the procedure must also be contained in the synchronization of the 

calling operations. This is because the procedure itself can't be included as an 

operation in the synchronization of the resource. Otherwise, since the calling 

operation is executing, the call will cause the procedure to block. The result is a 

deadlock. 

An alternative method which can be used for serial resources which allows 

procedures to be synchronized is to define the operations as sequences of procedures. 

For example, if an operation f uses a procedure g, it might be written as f - sf;g;tf 

where sf and ff are also procedures and can be included in the synchronization of the 

resource along with g. 

For a concurrent resource it may be possible for two cperations to 

simultaneously call a procedure. If only one invocation of the procedure can be 

allowed at a time, it must be included in the synchronization for the resource. In this 

case, it must be possible for both the calling operation and the procedure to be 
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executed at the same time. This will only be true if there is a composed state 

transition from each state which can result from the prologue of a calling operation to 

a state at which the procedure can be applied, Also, these composed state transitions 

shouldn't contain the final transition of the calling operation. If this condition doesn't 

hold, it will be possible for a calling operation to start and become deadlocked when 

the procedure is called. 

When an operation calls a procedure which is synchronized, it is possible to 

drop the restriction discussed earlier that the final transition of an operation can be 

applied at every state which can occur during the execution of the operation. In this 

case, the restriction only needs to be enforced for all of the states which the resource 

can be in after the last such procedure has been executed since the operation can't 

complete until this occurs. 



CHAPTER VI 

CONCLUSION 

In this research, the problem of synchronizing operations defined on a shared 

resource was studied. The approach was to express the sequences of operations 

which are allowed on the resource by creating synchronization relationships consisting 

of a group of states and a successor function. An alternative model was also given in 

which states were represented as multisets of elements and the state changes caused 

by the execution of an operation were expressed as state transitions. 

A series of restrictions to this model was presented to isolate classes of 

synchronization due to implementation or notation. The first restriction was that only 

those resources for which the synchronization could be expressed using a finite 

number of states was studied. The next restriction was to require that the successor 

function be injective with respect to eac!' operation. Another class, called single 

transition, was shown to be a subclass of the injective resources. A further restriction 

of the single transition resources produced the boolean element resources. A subclass 

of the boolean element resources was formed by requiring that the successor function 

be projective with respect to each operation. These resources were catled simple 

serial. The final restriction was to disallow Z expressions from the initial state to any 

persistent set entry state. This leads to the restricted regular expressions described 

in chapter III. 

An open question which was left unanswered was the characterization of the 

i i.riiiMgmilMii3i,^iafa—'"■ -"■-' -:^;..^l^      .^^.^ ^■*1^^... 
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single transition resources in terms of restrictions on the successor function. These 

resources were shown to be injettive and several other properties were shown to 

hold. However, these restrictions aren't sufficient. The problem is that the restriction 

is dependent on the sequences in which an operation can occur rather than just on the 

states at which it may be used. 

An extension was made to this model to allow concurrent resources to be 

handled. It was shown that synchronization couldn't be expressed as sequences of the 

operations but that prologues and epilogues were needed. Three different levels of 

systems were looked at. The firet restricts the model to only • finite number of ttates. 

The next allows only relationatly parallel resources. The final restriction elso requires 

that the resource be boolean element. 

The method which can be used to implement synchronization wns shown to be 

increasingly simple as the model was restricted. Implementations were given for all 

finite state resources, the single transition resources, boolean element resources, and 

simple serial resources. The overhead required to decide if an operation conid start 

execution was discussed. The differences between one waiting list and several in 

relation to the difficulty of a search when an operation completes execution was also 

shown. 

The problem of deadlocks was briefly discussed when it was shown that every 

permanent operation must be an auxiliary of every persistent set. However, this won't 

prevent deadlocks from occurring. They are also dependent on the sequences of calls 

made by each process. Consider, for example, two resources with synchronization 

specified by the restricted regular expressions (e f)* and (g h)* respectively.  Assume 
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that these resources are used by two processes, one of which calls f and then g and 

the other which calls h and then e. A deadlock will result. In general, the solution to 

this problem isn'» computable. Even if the processes are restricted such that it is 

deudable whether or not a deadlock will occur, it would involve checking the code of 

each process which uses some shared resource. 

One of the reasons for this study was to provide a means with which various 

methods   of  synchronization  could  be  classified.    It  was shown  that  the  class  of 

resources which can be synchronized by using boolean semaphores such that at most 

one may be positive at a time and requiring that an operation do a P on one before it 

starts and a V on one when it completes corresponds to the simple serial resources. 

Allowing P-V multiple but still allowing only boolean semaphores corresponds to the 

boolean element resources.  Finally, combining P-V multiple and P-V chunk such that an 

operation may start by decrementing several semaphores by values which may be 

greater than one but requiring that the semaphores be bounded corresponds to the 

single transition operations. 

Various forms of regular expressions were also looked at. Restricted regular 

expressions were shown to correspond to the simple serial resources without Z 

expressions, restricted multiple regular expressions were shown to correspond to the 

boolean element resources, regular expressions themselves were shown to correspond 

to the finite state resources, and multiple regular expressions were shown to be a 

subset of the relationally parallel resources. 

A   possibility   for   further   work  is   to  study  other   modifications   to   regular 

expressions.   This would involve discovering the necessary restrictions to the model 
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and   then   provmg  that   the  n.w  form  of   rtfultr  expression   end  the   restriction 

represent the same synchronization.   One possibility is the parallel regular expression 

which allows the notation R/ZR' where R and R' are regular expressions.   The meaning 

is that a sequence of operations allowed by R and a sequence of operations allowed 

by R' can be executed concurrently.  The advantage over multiple regular expression« 

is that all of the synchronization is contained in one expression and not spread across 

several, thus improving understandability.   There is also a disadvantage in that some 

synchronization which can be expressed using restricted mult.ple regular expressions 

can't   be   expressed   using   parallel   regular   expressions.    For   example,   consider 

{(a c>*,(a d)*.(b c)*}.   Initially, a and b can be executed simultaneously.  After they have 

each finished, c can be executed and then a and b again.  This can be expressed with 

((a//b)c)*.    U  isn't possible to add d to this expression so that it follows  a and 

executes   in  parallel  with  b  and  c.    It  might   also be  desirable to  restrict  these 

expressions  in some manner  similar  to restricted regular expressions  In  order  to 

simplify the implementation. 

Another way in which regular expressions could be altered would be to allow 

parameters in some manner. For example, the s.ze of a stack influences the number of 

states needed to synchronize the operations PUSH and POP and therefore it affects 

the regular expression used. When a type STACK is defined, it shouldn't be restricted 

to a specific size. This* decision should be postponed until a specific instance is 

declared. One suggestion [Ha75] is to allow the notation (f-|>". This it similar to the 

notation f+g except that the number of times that f has been executed at any given 

tine minus the number of times that g has executed must be neither negative nor 

greater than n. Thus, the synchronization for the stack can be expressed using the 

expression ((PUSH-P0P)n)*. 
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Another extension of the work described here is to allow an infinite number of 

states. Considering each state and listing the values for the successor function for 

such a resource is impossible. However, usmg elements to construct states and 

associating operations with state transitions yields a possible solutior. *o this problem. 

It wculd still be necessary to restrict the resources such that there are only a finite 

number of elements and each operation can only be associated with a finite number of 

state transitions. This is a reasonable restriction since most infinite state resources, 

such as an unbounded stack, are usually implemented using an unbounded counter or 

semaphore which is then replaced by an element in the model, 

The use of modified regular expressions in a resource definition to describe 

synchronization is an attempt to make this synchronization more understandable and 

the resource more reliable. Hopefully, a high level progrgmming language containing 

some form of regular expressions, which was selected based on this study, will be 

developed. This research could then be considered to have made a small contribution 

to the area of reliable software. 

, 
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APPENDIX 

This appendix contains proofs of theorems from chapter III. 

Thaortim 3 1:    For  a  restricted regular expression R with the corresponding 
finite automaton (K,Z,8,p,F) the following properties are true. 

Proprrty 3.1.1:       Either R is final loop or (Vq d F) (Vf < 2) «(q,f) is dead. 

Propany 3.1.2:       (Vf ( 2) (Vq.q' ( K) either «(q.f) or «(q'.f) is dead. 

Property 3.1.3:       (3f i I) «(p,f) isn't a dead state. 

Property 3.1.4:       Either R is initial loop or (Vq < K) (Vf ( D «(q.f) t p and 
p isn't in F. 

Property 3.1.5:       If R is simple (not selection) final loop, then there is 
only one state in f. 

Furthermore, let (K,Z,{,p,F) be the finite automaton corresponding to R and 
{K\r,i\p\F) correspond to R'. Then (K-F,I,6i,p,{p}) corresponds to R*, 
either ((K-F)uK')ru2,,82lp,P) correspond« to RR* or there is only one state 
p" < F and (KiMKMp'D^lfl'.^P.F') corresportd« to RR', and 
(Ku(K,-{p'}),2u2',J4,p)FuF,) corresponds to R+R' where 

»l(q,f) -P if 8(qlf) i F 
otherwise (Vq i (K-F)) 

82(q.f) •P' 
= 8(q.f) 

if 8(q,f) i F 
otherwise (Vq ( (K-F)) (Vf € 2) 

- 8'(q,f) (Vq ( K') (Vf < 2') 
83(p")f) 
83(q)f) 

- «'(p'.f) 
- 8(q(f) 
- 8,(q,f) 

(Vf < 2') 
(Vq ( K)(Vf i 2) 
(Vq < (K'-{p'})) (Vf i T) 

84(p,f) 
84(q,f) 

- 8'(p',f) 
- 8(q,f) 
- 8'(q)f) 

(Vf i T) 
(Vq < K) (Vf « 2) 
(Vq < (K'-Ip'})) (Vf ( 2') 

Any arguments for which Jg. 83, or 84 are undefined are dead. 

      Janafaia  i--^.jgiagäa>  ^_ 1    j bi 
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l.«mma 3.1.6: If R* is a restricted regular expression such that R and the 
corresponding finite automaton (K.I.S.p.F) satisfy properties 3.1.1 to 3.\A 
then the finite automaton corresponding to R* is (K-F,I(8',p,{p)) where 

«'(q.f) - p 
- B(q,f) 

if «(q.fi < F 
otherwise (Vq < (K-F)) 

and properties 3.1.1 to 3.1.5 are satisfied 

Proof: By the definition of a restricted regular expression, R is neither 

initial nor final loop. Thus, by property 3.1.1 (Vq < F) (Vf ( J) «(q,f) is 

dead and by property 3.1.4 p isn't in F. As shown in chapter III, (Vq ( F) 

(Vf ( 2) 8'(q,0 - {«(p,f),i(q,f)}. But «(q,f) is a dead state and entering such 

a state will never result in acceptance of the string. Therefore, SW) - 

8(p,f) and a and p' an equivalent and since both p' and q are final states, 

they cv\ be combined, leaving p' as the only final state. Since R isn't 

initial loop, by property 3.1.4 (Vq i K) (Vf i I) 8(q,f) H p. Thus, p can be 

deleted and p' renamed to be p. Properties 3.1.1 and 3.1.4 are true for 

R* since it is both initial and final loop. Property 3.1.2 is true since 

(Vf ( 1) if (3q ( K-F) «(q,f) i F then (Vq' t q) «'(q'.O ■ «(q'.O is dead. 

Otherwise (Vq.q' ( K-F) either «'(q,f) - a(q)f) or aXq'.f) - «(qV) is dead. 

Since property 3.1.3 is true for R (3f ( 2) 8(p,f) isn't a dead state. Either 

BXp.f) - p or 8'(p,f) - «(p,f), so «'(p,f) isn't dead and property 3.1.3 is true 

for R*.   Property 3.1.5 is trivially true since p is the only final state. 

I,«mma 3.1.7: Let RR' be a restricted regular expression such that R and the 
corresponding finite automaton (K.J.B.p.F) and R' and its corresponding 
finite automaton (K'.SXp'.P) satisfy properties 3.1.1 to 3.1.5. Let M be 
the finite automaton corresponding to RR'. If R is final loop, then M - 
(Ku(K'-{p'}),2uI',«",p,F') and F - {pH} where 

        , :  ._  :  iii 
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8"(pM,f)   -«'(p'.f) 
a"(q,f)     - »(q,f) 

- IW) 

(Vf ( T) 
(Vq < K){Vf < I) 
(Vq < (K'-fp'})) (Vf ( T) 

.jnd   Hq.f)  is   a  dead  state   for  all  other  (q.f)  pairs.    Otherwise,  M 
({K-F)uKMur,«",p,P) where 

«"(q.O P' 
l(q,f) 
«'(q.f) 

if i(q,f) < F 
otherwise (Vq < (K-F)) (Vf ( I) 
(Vq < IC) (Vf < Z') 

and 8"(a,f) is a dead state for all other (q.f) pairs,   In either case, RR' and 
M satisfy properties 3.1.1 to 3.1.5. 

Proof: By the definition of a restricted regular expression, t and T are 

disjoint. Therefore, as shown in chapter III, (Vq < K) (Vf i I) a"(q,f) - 

a(q,f), (Vq i F) (Vf < T) «"(q,f) - «'(p'.f), (Vq i IT) (Vf ( D «"(q.f) - W), 

and i"(q,f) is a dead state for all other (q,f) pairs. If R isn't final loop, 

then by property 3.1.1 (Vq < F) (Vf < Z) «(q,f) is dead. Thus, (Vq < F) 

(Vf i ZuZ') «"(q,f) - «"(p'.f) and q is a final state iff p' is. Therefore, F can 

be deleted and (Vq' < (K-F)) (Vf < Z) if «(q'.f) < F then «"(q'.f) - p'. If R is 

final loop, then R' can't be initial loop. By property 3.1.4 (Vq < K') 

(Vf ( Z') J'(q,f) »< p' «nd p' isn't in F'. Therefore, F" - F* and (Vq < KuK') 

(Vf i ZuZ') fi"(q,f) t p' so p' can be deleted. Property 3.1.1 holds since if 

R' is final loop, then so is RR'. Otherwise, by property 3.1.1 (Vq < F') 

(Vf < Z') «'(q,f) - «"(q.f) is dead. Also, (Vq i F') (Vf i I) «"(q,f) is dead. 

Property 3.1.2 must hold since if R is final loop it must be simple fina1 loop 

and by property 3.1.5 there is only one state p" in F. (Vf < Z) 

(Vq ((K'-{p'}))  «"(q.f)  is  dead   and  (Vq.q' ( K)  either  «"(q,f) -  «(q.f)  or 
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«'V.O - 6{q\f) is dead.   (Vg ( T>) (va f |f.fn..i> .,./„   ^ B    * MTq * K {P /' • (g.q) is dead.   If a'V'tf) - 
••<P-..) *„•, de4d, ,„.„ (yq ( „.,„.„ nqs) . ,,(((|g) , ^^ ^^ 

(Vc-.q' < KMp'i, either ,",<„, . ,.(q,g) js dMd „ e|se ^ _ ^^ ^ 

*••* If R isn't «„., l00p, lhen w<1) ^^^ t.w) ,s ^ ^ 

<Vq,,' < K-F, .„„„ ,(q,0 i, dMd in w(i.ch ^^ ^ n<].() |( ^ ^ 

rw). iw,,) or eis. nq,„. ,„,„, u^,,, (Vf, r) (yq (K_F) #,w) 

"  -..d .„d ,yw. , K, either ,"„,,, . ,,,,„ „ d„d „ ^ ^ _ 

•W) is deed   pr„p.r,y 3,3 ho|ds since ^^ ^ _ ^ ^ ^^ _ 

«(P,f). By property 3,.3, ,3, < J, ,W) ,„,, dead |( R . .^ ^ ^ 

so is RR- Otherwi,., by property 3.1.-! p isr,t in F and (Vq < K) (y( ( ^ 

•W)- P.   s™ (yd<K-, <yf<r) ,,„,„, p| (y((Jur) ^^^ 

•"(9.0 f P.   ThlB, proper,y 3, „ ^ (or ^   I( RR, ^ ^^ ^^ ^ 

th.n so is R- ,„d there ceo only be one stete in P. 

t-QTnmn 3.18-   I At K-ID* U- ... 

corresponding lie u^ ^^(^^'n"^8^0" ^ thaf R ^ ** 
finite auto Jon <*mZ^ZX^ f^ 3 iTTr.?8 

automaton corresponding to R+R<( (M^^.j'S^ ^^t^6 f,mte 

«"(p.f) 
»"(q,f) 

«'(p'.f) 
«(q.O 
«'(q.f) 

(Vf ( 2') 
(Vq ( K) (Vf < 2) 
(Vq < (K'-{p'})) (Vf r !•) 

and »"(q,f) |s a dead state for a|| other ^ 

109 

to 3.1.5. y properties 3.1.1 

"root, Neither R nor R' ere initial loop, so by „roperty 3.M (V, < K, 

W < l> »(«.» , p end (*,■, K-) ,V, , r, ,,„.„ , p, There(ore| both p 

-n- P- cen be deleted.  Also, p ien't in F end p- isn't in F- end ther.tor. p" 
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isn't in F".   By the definition of a restricted regular expression, I and 1' 

are disjoint.   Thus, as shown in chapter III. (Vf ( I) I'W) - a(p.f) and 

(Vg i T) «"(p-.g) - BV,g).   Since p was deleted, p" can be renamed to be 

p.    Property  3.1.4 holds  since  by  the  definition of   restricted  regular 

expression,   neither   R   nor   R'   is   initial   loop   and   by   property   3.1.4, 

(Vq < KIHKMP'}» (Vf ( luD &»"(q,f) '  P-   P^Perty  311  holds  SinCe  if 

e.ther R or R' is final loop, then so is R+R'.  Otherwise, by property 3.1.1 

(Vq < F)   (Vf ( I)   6"(q,f) -  8(q,f)   is   dead.    Likewise,  (Vq < P)   (Vf < 2') 

8"(q,f) - «'(q,f) is dead.   Property 3.1.2 holds since (Vf i I) (Vq < K') 8"(q,f) 

is dead and (Vq' < K) «"(q',f) - WA (Vq.q' < Kü(IO-{p'})) either «"(q.f) or 

8"(q'.f) is dead.   Also, (Vg i T) (Vq i K-{p)) «H(q«) is dead.   If 8"<pj) - 

8'(p',g) isn't dead, then (Vq' ( K'-{p'}) «"(q'.g) - »'(q'.g) is dead.  Otherwise, 

B"(P,g)  is  dead  and  (Vq,q' ( K'-{p'}) either  Hq«) - «'(q.g) or  6"(q'.B) - 

«'(q'.g)  is  dead.    By   property  3.1.3 (3f i K) Hp.O - Kp.f)  isn't  dead. 

Property 3.1.5 holds since R+R' can't be simple final loop. 

The proof of theorem 3.1 will now be given. 

Proof: The proof is by induction on the complexity of the regular 

expression. For the finite automaton ({p,q,q,),{f}.«.P,{q}) where |(p,f) - q 

and |(q.f) - 6(q',f) - q', «(q.f) •»<« W,f) are dead and l(p.f) isn't, so 

properties 3.1.1, 3.1.2, and 3.1.3 «re true. Also, there is only one final 

state which isn't p and there is no state p' such that Kp'.f) - P- Thus, 

from lemmas 3.1.6, 3.1.7, and 3.1.8. a finite automaton can be constructed 

as indicated in the theorem and the properties hold. 

■ 
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Thoorvm 3.5: A shared resource on which Uie allowable sequences of 
operations are given by a restricted regular expression is simple serial 
with no Z expression from the initial state to a final state. 

Lemma 3.5.1: Assume that the synchronization for a resource is expressed by 
the restricted regular expression R* and that the synchronization for R 
has no Z expression from the initial state p to a final state. Then the 
synchronization for R* doesn't have a Z expression from p to p either. 

Proof: If there is a Z expression from p to p then by lemma 3.2 there 

also is a simple Z expression aj..^ from p to q, bj..,bm from q' to q, and 

cj...cn from q' to p such that q^p. Also, by the definition of a simple Z 

expression, (Vq") if (3f < 1) such that either (3i, l<i<K) (q",f) - tj, (3i, 

l<i<m) (q",f) - bj, or (3i, l<i<n) {q",f) - Cj then q'Vp. Thus, (Vi, ISiSK) 

fi^aj) t p and therefore 1\{B^) - J(aj), (Vi, lsi<m) J^bj) t p and therefore 

B^bj) - 8(bj), and (Vi, l<i<n) J^Cj) t p and therefore 6|(CJ) - 8(Cj). By 

property 4 of theorem 3.1, since R can't be initial loop by the definition of 

a restricted regular expression, (Vq i K) (Vf ( Z) i(q,f) t p. Thus, J(cn) ^ p 

and it must be true that i(cn) < F, Therefore, Bj...Bk, bj.-.b,;,,, and c^.cn 

form a Z expr-ssion from p to some element of F in R, a contradiction, 

Lemma 3.5.2: Assume that the synchronization for a resource is expressed by 
the restricted regular expression R+R' and that neither the 
synchronization for. R nor for R' has a Z expression from the Initial state p 
or p' respectively to a final state. Then the synchronization for R+R' 
doesn't have a Z expression from p to a final state either. 

Proof: Assume that there is a Z expression u - (p>g|Kpitg2^"^n-ll'n^ ^ 

from q to pn, and y from q to q' < (F ü F') in R+R'. By the definition of a 

restricted regular expression, R+R' can't be initial loop and by property 

3.1.4 (Vq" < K u (K'-{p'})) (Vf < S U T) «4(q",f) H p.   Let Kl - K-{p) and 



APPENDIX 112 

K2 - K'-IP'}. Thus, p^ < Kj or p^ i K2. Assume that pj < Kj. By the 

definition of «4l (Vi, ISiSn) pj i K^ If q < K2, then {V(q,,,f) in ß) q" ( K2 

and pn (. K2, a contradiction. Thus, q < Kj and (V(q",f) In ß) q" ( Kj and 

f < I. Likewise, (V(q",f) in y) q" < Kj, f ( Z, and q' ( Kj. Since q' is also in 

F u F', od, /?, and t forms a Z expression from p to q' ( F in R. If pj « Kg, 

then gj ( J' and JXp'.gj) - pj. Using an argument similar to the one 

above, it may be shown that if pj < Kg then u, ß, and 7 form a Z 

expression from p' to q' ( F' in R'. 

Lemma 3.5.3: Assume that the synchronization for a resource is expressed by 
the restricted regular expression RR' and that neither the synchronization 
for R nor for R' has a Z expression from the initial state p or p' 
respectively to a final state. Then the synchronization for RR' doesn't 
have a Z expression from p to a final state either. 

Proof: There is no arc progression (qot'i)-(Pn-l'V from a 8^e ''O ( ^ 

to qn < t'. Otherwise, (3i, 0<i<n) qj < K' and (Vj, i<j<n) qi « K. Thus, 

^2^\'f'\+0 " qi+l * K c>r '3^i>fi+l) " ^i+l which contradicts the definition 

of $2 and '3- ^ there is an arc progression u =» (qo^l^-^n-l^n^ 'rorn 

q0 « K to t;n < K' then (3i, 0<i<n) q| c K' and (Vj, 0<j<i) qs i K. It must also 

be true that (Vj, i<j<n) q; ( K'. Otherwise, there is an arc progression 

from q| i K' to q; i K. Assume there is a Z expression from p to a state 

q" < F'. Then there is a simple Z expression aj^.a^ from p to q, bj.-.b^, 

from q' to q, and Cj...cn from q' to q". It can't be true that q' « K' and 

q' € K.  Thus, either q ( K' or q' ( K. 

Case 1: R isn't final loop and Jg 's used. If there is such an <* then qj ■ 
p'. If q < K' then (3jl, l<jl<k) (3f < I') -M - (p'.f). If q' < K then 
(3)2, l<j2<n) OUT) Cj2 - (p',f), It must also be true that 
•(Cio-P = Pp ^- If q « K1 and q' i K then (3j, l<jSm) (3f < I') bj - 
(p',f), a contradiction of the definition of a Z expression.   If q' < K' 
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then (Vi, ISlSm) if bj - (p",t) then p" ( K' and f < T. Also, (Vi, lsi<n) 
if Cj - (p",f) then p"< K' and f ( T. Thus, a^.-a^ bj-.b^ and 
c^-.Cr, form a Z expression from p' to q" in R'. Note that by the 
definition of a simple Z expression there is no bj - {p',f>.   Similarly, 
if  q ( K  and  q' i K then  aj...Bk, 
expression from p to pp in R 

bj...bm, and c^-Cß-l  ^orm  a ^ 

Case 2: R is simple final loop, ^3 is used, and there is only one state 
p" ( F. If there is such an u then q^^ » p". If q < K* then <3j3, 
l<j3<k) (3f3 ( T) a^ - (p".f3>. If q' < K then (3J4, l<j4<n) (3f4 ( 2') 
c.4 - (p",f4). It must also be true that r(p,,f4) - ^(pV^). If q < K' 
and q' ( K then (3j, l<j<m) (3f < I') bj - (p",f). a contradiction of the 
definition of a Z expression. If q' < K, then 8j...ak, b^.-.b^ and 
Ci.-.C:/«.! must be a Z expression from p to p" in R. If q < K', then 
(p',f)aj3+1..,aK, bi...bm, and c^.c,, form a Z expression from p' to q" 
in R'. 

The proof of theorem 3.5 will now be given. 

Proof: By property 3.1.2, the resource must be simple serial. There 

clearly is no Z expression from the initial slate to a final state of a single 

operation expression. Thus, from lemmas 3.5.1, 3.5.2, «nd 3.5.3 the 

theorem must hold. 

. 

 , L^. ■ .'  äamma. .■AL^-^I 
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Thaorom 3.7:   A simple serial resource wit4' no Z expression from the initial 
state to a state q such that either KC operation may be applied at it or 
else q  is  a persistent set entry state c«n be written «s  a restricted 
regular expression without repeated names. 

Definition: The final ttatt* of a simple serial resource as described in the 
theorem are the persistent set entry states and the states at which no 
operation can be apyiied, 

Lamitut 3.7.1: Assume the bynchronization for a finite state resource M with 
initial state p has the property that there is an arc progression from 
every state to p. Let M' be a resource which differs from M in thai there 
is an additional state p' at which no operations can be applied and tho 
successor function S' is defined as follows: S^q.t) - p' if S(q,f) - p and 
SXq.f) - S(q,f) otherwise. If M is simple serial with no Z expression from p 
to p then M' is simple serial with no Z expression from p to p'. Also, if 
the synchronization for M' can be expressed with the regular expression 
R then the synchronization for M can be expressed with R*. Finally, there 
is no persistent set in M1. 

Proof: An operation can be applied at a state of M ir it can be applied at 

the sanfe state of M*. Thus, M is simple serial iff M" is. Since there is an 

arc progression frorti every state of M to p, at least one operation can be 

applied at every state of M and therefore also at every state of M* except 

for p'. Every arc progression in M to p is an arc progression in M1 to p'. 

Hence there can be no persistent set and p' is the only final state. By 

theorem 3.1, if the synchronization for M' can be represented by R, then 

the synchronization for M can be represented by R*. Finally, assume that 

there is a Z expression from p to p' in M*. By the definition of M', this 

must also be a Z expression from p to p in M. 

Lemma 3.7.2: For a finite state resource with initial state p, if there is an arc 
progression from some state q to p but none from another state q' to p 
then there can be no arc progression from q' to q, Furthermore, if there 
is no Z expression from p to a final state, then every arc progression 
from q to q' must contain an arc (p,f). 
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Proof: If there is an arc progression from q' to q, since there is one from 

q to p, there must be an arc progression from q' to p, a contradiction. If 

(qOih)-(<ln-l'V is an arc PfWession from q - q^ to q' - qn, then (3kf 

0<k<n) there is an arc progression oi from qk to p but there is no arc 

progression from qk+1 to p. There must also be an arc progression ß 

from qk+1 to some final state qt. Since there is no arc progression from 

qk+1 to p, there can be no arc (p.f) in ß and there can be no arc (qf>f) in 

oc. If qk t1 p, then (, u, and /? form a Z expression from p to qf, viclating 

the assumption. Therefore, q^ - P and there is an arc (P>fk+P in the arc 

progression from q to q'. 

Lemnia 3.7.3: If there is a Z expression f'om a state p to itself then (Vq) if 
there is an arc progression from p to q then there is a Z expression from 

P to q 

Proof:   Since there is a Z expression i.-om p to p, by lemma 3.2 there is 

also a simple Z expression from p to p conposed of »re progressions u - 

(PO-Si) •(Pm-l.gm) from P - PO t0 some state ^tv $ ' (Vl^-^n-l'V 

from a state q0 'o qn) and y from q0 to p such that (Vi, 0<i<n) qj t p, (Vj, 

0<jsn) there is no arc (qi.f) in y, (Vk, 0<k<n) there is no arc (qK,f) in U, 

there is no arc (p,f) in y, and p t QQ. There are several cases which must 

be handled. In each, < represents the empty arc progression. 

Case 1:   If p - q, then there trivially is a Z expression from p to q. 

Case 2: If QK 0<k<n) qk - q, then there are ro arcs (p,f) or (qk,f) in y, 
p >< q - qkl p >< q0, and (Vi, 0<i<k<n) p t qj. Thus, «, y, and 

(q0<f l^-^k-l^k',orm a Z exPress'on 'rom P to <*• 

Case 3: If there is an arc (q.f) in y, then y can be written as «rWh-", (Vi, 
0<i<n) qj t p, (Vi, 0<i<n) q-^ q and there is no arc (q^f) in y\ and 
there is no arc (q0,t) in u. Thus, oc, ß, and y form a Z expression 
from p to q. • 

.,.,^.MMJ.lfa....   ., ■■ ^^ , .... ■..       .  '    ■.lMLi^i^.M^..Ut: ^yMJMMMaJJJJaM.^^. ^^.nfca^aMMja.aiaaaa.jiia«^,:.!,-'. aa ^^^««aka^M^ajliiirtaMiii 



APPENDIX 116 

Ca-te 4; If there is an arc progression u' from qr1 to q which doesn't 
contain any arc (p,f) and there is no arc (q.f) in y, then there is no 
arc (p,f) or (q.f) in «y, p f< q, (Vi, 0<i<n) q| it p, and there is nn arc 
(p,f) in t>c\   Thus, (, y, and ßu' form a Z expression from p to q. 

Cat« 5: If there is no such oi' from qn to q, then every arc progression 
from p to a which contains an aT (qn,R) must also contain an arc 
(p,f). Therefore, there is a'so an arc Progression y' from p to q 
which doesn't contain any arc (qn(g). As a result, (Vi, 0<l<n) c.j f* p, 
(Vi, 0<i<n) qj / q, (Vi, 0<i<n) there is no arc (qj,f) in u, end there is 
no arc (qn,R) in y or y\ Thus, oc, ft, and >>' form a Z •rpression 
from p to q. 

Lemma 3.7A: Assume the synchronization for a finite state resource M with 
initial state p has the property that there are arc progressions from some 
of the states to p. Let M' be a resource consisting of those states of M 
for which there is an arc progression to p along with all of the arcs which 
result in one of these states. Let M" be a resource consisting of the 
states of M not in M', a new state p', and the arcs of M not in M' with any 
state of M' replaced by p'. There are no states of M" in any arc of M7. M' 
is a persistent set with entry state p. W and M" have disjoint sets of 
operations and pre simple serial if M is simple serial. If the 
synchronization for M' can be expressed with the regula expression P', 
the synchronization for M" can be expressed with the regular expression 
R", and there is no Z expression from p to a final state, then there io no Z 
expression from p to p in M1 or from p' to a final state in M" and the 
synchronisation for M can be expressed by R'R". 

Proof: By lemma 3.7.2 there can be no »re progression from any staie of 

M" to any state of M1 in M. Thus, every arc resulting in a state of M* must 

be of the form (q,f) for some state q of M. If (qQiV-^n-l'V is an 8rc 

progression from a state qg to p in M, then (Vi, 0<i<r) there is an arc 

progression from q, to p. Therefore, qj and (qjifj+i) are in M' and there is 

an arc progression from qQ tc p in Kf. Since there is an arc progression 

from every state of M1 to p in M, there also is one in M1 and M' is a 

persistent set. Since p is the initial state, it must be the entry state and 

also the only final state of fvT   There is a one-to-one correspondence 

a 

I 

    . ^ ^_— -^""■^a^ . ,  
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between the arcs of M and those of M7 and M".   Therefore, if an operation 

is only part of one arc of M, it will be part of either one we of W or one 

arc of M".   If there is a Z expression from p to p in 1^ therr mutt also 

have  been one  in M and by lemmi 3.7.3 there must have been  a  Z 

expression from p to a final state in M.  Assume that u, y, and fi form a Z 

expression from p" to a final state in M".   The first arc      ot must be of 

the forji (p'.f) and results in a state q' of MM.   This arc must represent 

(q,f) in M where q is a state of M5.   But then (q.f) is an arc progression 

from a state ot M to a date of M" and by lemma 3.7.2 must contain «n arc 

(p.g).   Thus, q - p and u, y, and ß forms a Z expression from p to a final 

state   in M.    By  theorem 3.1   and the fact  that every arc  (p',f)  in M" 

represents an arc fn.f) in M, M can be represented by R'R". 

nofimtion: The noxt m of a state p, N<p>, is {q | (3f) S(p)f) - q}. The tail i*at*i 
of a state p is {q | (Vq1 f N(p» there is an arc progression from q' to q}. 
1 he tail arcs of a state p is {(q,f) | q is a tail state of p}. 

Lemma 3.7.5:  If q is a tail state of some state p and there is an arc progression 
/? from q to another sti*e q', then q' is a tail state of p. 

Proof: Since q is a tail state of p, for each state p' in N{p> there must be 

an arc progression «* from p' to q. But then e^ is an arc progression 

from p' to q'. 
I 

Lemma 3.7.6: If there is no Z expression from a state p to a final state, there 
are no arc progressions from p to itself, and there is at tsast one state in 
N{p), then there is a unique tail state p' of p such that every «re from p to 
a tail state of p other than p' must contain an arc (p'.f). 

Proof:   Let «/. be an arc progression from p tn a tail state p' of p which 
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contains no arc (q.f) for some tail state q.  (If there is such a state q, let ot 

be the arc progression from p to q instead).   Assume that there is an arc 

progression from p to a tail state q' H p' of p which contains no arc (p'.f). 

Using the same argument as above, it may also be assumed that there is 

no arc (q,f) in the arc progression for some tail state q.   if there is no 

such arc  progression, then the proof is done.   Either there is  In arc 

progression ß' from q' to some final state qf * p' which contains m arc 

(p'.f) or else there is one from p' to a final state other than q' which 

contains no arc (q'.f).   Without loss of generality, it may be assumed that 

the former is the case.   It should be noted that since there is no arc 

progression from p to itself, p isn't in N<p) nor tan it be a tail state of 

itself.   Since there is an arc progress.on from q' to qf> by lemma 3.7.5 qf 

must be a tail state of p.   If there is an arc progression y from qf to p', 

then for each arc (q.f) in y, by lemma 3.7.5, q must be a tail state of p and 

it must be true that q H p.   Therefore, oc, y, and e form a Z expression 

from p to qf.   Since there is no such Z expfession, there can be no such y. 

Let the last arc of * be (p",f).   Since p" isn't a tail state of p there must 

be some state q" in N{p) such that there is no arc progression from q" to 

P •    Let  t  and  ß  he  the  arc  progressions  from q" to p' and  to  q' 

respectively.   For every state q such that (q,g) is  an arc in oc there 

trivially is an arc progression from q to p".   Thus, there can be no arc 

(q,h) in y or in fl.   Al«, there can be no arc (qf,h) in y since otherwise 

there would be an arc progression from qf to p'.   It must therefore be 

true that oc, y, and flfi form a Z ev-eSsion from p to qf. 

Definition:  The unique state p' will be called the tail entry Btate of p. 

I      .;.^.     . 
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Lemma 3.7.7: Assume there is no Z expression from a state p to a final state, 
there are no arc progressions from p to itself, and there is at least one 
state in Wp). If p' is the tail entry state of p and q isn't a tail state of p 
but there is an arc progression u from p to q, then any arc progression ß 
from q to a tail state of p must contain an arc (p'.f). 

Proof: Since <*/? is an arc progression from p to one of its tail states, by 

lemma 3.7.6 either u or ß must contain an arc (p'.f). If (p'.f) I» an arc of 

c*, then there is an arc progression from p' to q and by lemma 3.7.5 q 

must be a tail state of p, a contradiction. 

Ltmmti 3.7.8: Assume there is no Z expression from a state p to a final state, 
there are no arc progressions from p to itself, and there is at least one 
state in N{p). If p' is the tail entry state of p, then there can be no Z 
expression u, y, and fl from p to p' such that no arc (q,f) in *', t, or /? q 

is a tail arc. 

Proof: There must be an arc progression /3' from p' to a final state. By 

lemma 3.7.b, for each arc (q,f) in ß' must be a tail arc of p. Thus, od, % 

and ßß' forms a Z expression from p to the final state. 

Umma 3.7.9: Assume there is no Z expression from a state p to a final state, 
there are no arc progressions from p to itself, and there is at least one 
state in Nip). If p' is the tail entry state of p, then there can be no Z 
expression *', y, and ß.irom p' to a final state such that every arc (q,f) In 

oc\ y, or /? is a tail arc. 

Proof: By lemma 3.7.6, there must be an arc progression ot from p to p1 

which contains no arc (q,t) for a tail state q of p. Thus, otei1, y, and ß 

would form a Z expression from p to the final state. 

■ 

Lemma 3.7.10: If a finite state resource is such that there is no arc resulting in 
the initial state p, there is no 7. expression from p to a final state, and 
there is at least one tail state of p, Ihen every final state is a tail state of 

P- 
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Proof:  4f there is an arc progression from a persistent set entry state q 

to the tail entry state p', then p' must be in the persistent set and there 

must be an arc progression from p' to q.   Therefore, by lemma 3.7.5 q 

must be a tail state of p.   Assume that there is a final state p" which isn't 

a tail state of p.   Let (p.f")/? be an arc progression from p to p" where ß 

is from a state q" « N(p) and contains no arc {p.g).   Since p" isn't a tail 

state of p. (3q' i N(p)) there is no arc progression from q' to p".   Let (p.f) 

be an arc progression from p to q', * be one from q' to p', and y be one 

from q" to p\  There can be no arc (p".g) in , or U or else there would be 

an arc progression from p" to p'.  If (q.O is in arc in ^ then there can be 

no arc (q(g) in u or els» there would be an arc progression from q' to p". 

The arc progressions (p.fV, y, and fi therefore form a Z expression from 

p to p", a contradiction, 

Lemm* 3.7.11:   Assume the synchronization for a fi"ite ^f^^'0;^ ^^ 
initial state p has the property that no arcs resul   in P a"dJ^ e 's J 
least one tail arc of p.  Let M' be a resource con« sting of  h«e • »tes o 
M which aren't tail states of p, a new final state q. «^ ^y. ^f

(q'f ^ 
a state q of M' such that if an arc of M* results in a tail state of p in M 
h n I? Results in q' in M'.  Let   - consist of the tail states of M and a 

the arcs (q.O for a state q of    '    The initial state p is in M*.   I   there is 
no Z exp e   ion from p to a final state in M. then every f"«! stete 0  M 
Tn MVhere is no Z expression from p'. the tail entry state of Pj* - f'™l 
täte in M". and if the synchronization for M can be •^•»•dJ^th

R
ft 

and  the  synchronization for  M" can be Z^Vu^JTJ* 
synchronization for M can be expressed with R'R .   If M i8 simple sens), 
then so are M' and M" and the sets of operations are disjoint. 

Proofi Since no arc results'In p, p isn't in N(p> and there can be no arc 

progression from a state in N{p) to p. Therefore, p isn't a tail state of 

itself and must be in M'.  By lemmas 3.7.8. 3.7.9. and 3.7.10, if there is no 
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progression from . sl.te ol M .0 . 

,„.»    Using the conslroction Iror» theoren, 3.!  .or 
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Deffrti.»:   The ^"""''•. "'   "„„'e th.t the tail er« ol . .<•'• ' 

,_ 3.7.12! .e; P --^^r r-r v^I t3 
express on from p to a nna. Mpi)« ^Pn+l1'    "     nA   nr 

else Aj'cAp and An+1 • Aj. 

Proof-   Assume that (q,g)< An and (q.g'      . 

. •   n in A   (3i. UJ^n) ^'.«^ isn,t in ^^ , i  ^ i.n't in A     Since (qVVisnt m An,UJ,     J 
(qig),5n " . t0 a', be the arc progression 
Let .be the arc progression from pn+l to q.. 

i« «   Thpre a so musi . .op- and/! be the ere progression fro. Pi to,.  There 

rot» Pj to 0. »na p u 
,rom o w q but there cen be none from p„tl 

be an arc progress.on from P, >o 0 

10 „•   u. ^ be en arc progression from 0 to a «net 

Since no arc results in P, there can be no re tp,. 
lo".) in, then there is en.-c Pression tromPj 

0-or if there is an ere (0,.)-,, .„„.,) In brth - 
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and ß or if (q'.f) is in ß then there is an arc progression from pn+1 to p' 

or q' to q which is a contradiction. Likewise, if there is an arc (p'.f) in 

both * and ^ or if (q'.f) is in /?' then there is an arc progression from Pj 

to q to p' or q' to q' which is a contradiction. Finally, since pn+i < N(p), 

(3f) S{ptf) - Pn+1- The arc progressions (p.fK, f, and ßfS form a Z 

expression from p to a final state, which is a contradiction. 

Unma 3.7.13:   Let p be a state such that no arcs ^)^^^ ^ 
expression from p to a final state.   For states q,q,q   « N(p), if A(q)    «q 
isn't empty but A(q) n A(q"> is, then A(q') n A(q > is empty. 

Proof-. Assume that A(q') n A<q") isn't empty. Then by lemma 3.7.12, 

either A(q) n A{q') n A(q"> - A(q) n A(q') or else A<q) n A(q') n A(q") - 

A(q') i A(q"), neither of which is empty. (Let prq, P2"«!^ PS"*'"' and 

i-n-2).  Therefore, A{q) n A{q") isn't empty, a contradiction. 

f-mn,Ä 1 7 14-   Let D be a state such that no arcs result in p and there is no Z 
'^^exp^ion from p to a final state.  If ^ Pn < N<p) and A, is as defmed in 

lemma 3.7.12, then (3j, l<)<n) An - ^p^ fl WPj). 

Proof: A2 - A<Pl) 0 A(p2) so the lemma is true for n-2. Assume that for 

some n. n>2, the lemma is true. Thus, (3j, KjSn) An - A^) o Wpj). By 

lemma 3.7.12, if Aip^ n A(pn+1) isn't empty, then either An+1 - An - 

Mp^nMpj) or else An+1 - M^) n A(pn+1). Likewise, if 

MP!) n A<pn+1) is empty, then An+1 is empty «nd An+1- 

KPX) n A(pn+1). Thus, the lemma is also true for n+l and by induction 

(Vn, l<n) it is true. 

Lemrn« 3.7.15:   Assume the synchronization for a finite state ^urc^ ^ 
initial state p has the property that no arcs result in p. there «re no tail 
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arcs of p, and there is no Z expression from p to a final state. It may also 
be assumed that if for state q there is no arc (q.f) tfvn there Is only one 
arc (qV) such that S(q,,f) - q. If there is another arc (q^g) such that 
^(q'^g) -q, then ereate a new state p" equivalent to q and let S(q",g) - p". 
Select any state p" such that p" i Hp). Let B(p") - {q | q < Nip) and 
A(p") n A(q) isn't empty) u {p"}, ({p"} is necessary in case A(p") is 
empty). Let fvf be a resource consisting of p, B{p"), any state q' such that 
(3q i Bip")) there is an arc progression from q to q', any arc from p to a 
state q ( Bip"), and any arc (q'.f) such that (3q < B<p")) (q'.f) ( A(q). Let MH 

be a resource consisting ohf a new state p' and all of the states and arcs 
of M which aren't in M" with the exception that every arc (p,f) is replaced 
by (p'.f). Either there is only one arc or else there must be at lejist one 
in M1 and at least one in M". There is no Z expression from p to a final 
state in M' or from p' to a final state in M". If M is simple serial, then so 
are M' and M" and M1 and M" are disjoint. Finally, if the synchronization 
for K/T can be expressed by R' and the synchronization for M" can be 
expressed by R" then the synchronization for M can be expressed by 
R'R". 

Proof: Since there are no tail arcs of p, the intersection over the states 

q « N<p) of A(q) is empty. If p" is the only state in N<p), then there can be 

no arc (p",f). Otherwise the arc would be a tail arc of p. Sin^e every arc 

(p,f) results in p" and there can only be one arc resulting in p", there is 

only one arc. Assume that there is at least two states In N(p>. By lemma 

3.7.14, (3q ( N<p)) A(p") n A(q) is empty. Thus, there are arcs (p,f) to p" in 

M' and (p,g) to q in M". By the definitions of M1 and A(q), for each arc 

(q,f) in M7 q is in M". If q«p, then S(q,f) must be in B{p"> and therefore 

also in M', Otherwise, (Bq' i B(p")) such that (q,f) c A(q,). Thus there is an 

arc progression from q' to q to S(q,f) which therefore must also be in M*, 

For each arc (q,f) in M", either q-p' and S(q,f) is in N(p)-B(p") or else 

every arc progression from p to q in M starts with an arc (p,g) such that 

S(p,g) - q' and q' i N(p>-B(p"). Thus, (q,f) i A(q') arJ there is an arc 

progression   from   q'   to   S(q,f).     Since   A(p") n A^')   is   empty   and 

■ 
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(Vq" < B(p")) A(p") n Alq") isn't empty, by lemma 3.7.13, A{q>) n A(q,'> is 

empty. Thus there can be no arc progressrjn from q" to q. If there is an 

arc progression from q" to S(q,f), then any arc (S(q,f),g) would be in both 

A^') and A(q"), a contradiction. Thus, either there is no arc progression 

from q" to S(q,f) or else there is no arc (S(q,f))g). But in the latter case, 

only one arc can result in S(q,f) and that is (q,f). Since there is no arc 

progression from q" to q, there can be none fron q" to S(q,f). Using the 

construction of theorem 3.1, the synchronization can be expressed as 

R'+R" and since each arc of M is either in M or M", if M is simple serial 

then so are M' and M" and R' and R" must be disjoint. Jf for a state q of 

M' or M" there is no arc (q,f) then there can be no ere (q,f) in M. 

Likewise, every persistent set of M" and M" must be « persistent set in M 

with the same entry states. Thus, every final state of W and M" must be 

a final state of M and every Z expression in M' or M" from p or p' 

respectively to a final state must be a Z expression from p to the same 

final state in M. 

The proof of theorem 3.7 will now be given. 

Proof:   For a set of synchronization relationships M with initial state p 

there are five possibilities. 

1. There is an arc progression from every state to p. In this case, the 
set of states form a persistent set with p as the only entry state. 
By lemma 3.7.1, the resource K/T as described in that lemma must be 
simple serial with no Z expression from p to a final state. Also, if 
the synchronization for M* can be expressed with the regular 
expression R, the the synchronization for M can be expressed with 
the regular expression R*, Finally, there are no persistent sets in 
M' and p isn't the successor of any «re in M1 so R can't be either 
final nor initial loop. 

• 
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